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Nothing new under the sun... &)
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TOWARDS FULL AUTOMATION OF ACCELERATORS THROUGH COMPUTER CONTROL
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Nothing new under the sun...
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T
The second line of deve]opment encounters problems of a global nature. Once all the
steps

CM-P00065164

TOWARDS FULL AUTOMATION OF AC

the ing up of the accelerator have modules associated with them and the opera-
tors' pr1nc1pa1 task is to analyze graphical outputs and to handle error conditions, then
full automation seems to be near. Unfortunately this is not the case. One of the most
difficult aspects in progressing from partial automation to full automation is in quantify-
ing the analysis of the various displays. For example, at the ISR the closed orbit can be
presented to the operator who, after inspection decides whether or not to call the closed
orbit correction module. This decision is based on the criteria from many different inputs
other than the closed orbit display. The closed orbit may be acceptable (i.e. within
recognized 1imits) but due to a background level slightly higher than normal in part of the
ring, the closed orbit is viewed with a more critical eye and may be corrected slightly.
These considerations represent one of the major problems of full automation.

Thus another important aspect of full automation is the ability to correlate the
outputs of many different modules to arrive at a particular decision.

J. Gamble, J.-Y. Hemery, D. Kemp, R. Keyser, J.=-P. Koutchouk,

P. Martucci, L.

Split, V. Kain, 13-19 Oct 2024
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What can Al do for
accelerators?




Something like this maybe...

Magnetic control of tokamak plasmas
through deep reinforcementlearning

Time-varying, non-linear, multi-variate control
problem solved with deep Reinforcement Learning

https://doi.org/10.1038/s41586-021-04301-9
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Reinforcement Learning (RL)

Learn dynamics (once and for all) through trial-and-error, no

exploration after training!

reward

(RL AGENT

ANN

parameter 0

)
policy
7o(s,a)

action

(- N
ENVIRONMENT

J

\.

CORRECTORS

observation

RL setup for trajectory steering

RL elegant (if not ideal) solution, but online training often not possible!

® Not sample-efficient enough

® Safety constraints

— RL (like MPC) needs to be built into accelerator design.

tCSC on ML 2024,
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Reinforcement Learning (RL) &)

Learn dynamics (once and for all) through trial-and-error, no
exploration after training!

reward

(RL AGENT policy | (ENVIRONMENT | T —— m—
ANN _ To(sa) - Systems to be built for RL:
|

20 1| connecrons | — fast executing (accurate) simulation / digital
twin for training

L ) X ) — instrumentation designed with control
observation algorithm
RL setup for trajectory steering

parameter 0

RL elegant (if not ideal) solution, but online training often not possible!
® Not sample-efficient enough
® Safety constraints

— RL (like MPC) needs to be built into accelerator design.
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Key ingredients...

Magnetic control of tokamak plasmas
through deep reinforcementlearning

https://doi.org/10.1038/s41586-021-04301-9

Accurate simulators

@ Full or meta training in simulation, simZ2real transfer or very sample-efficient adaptation

Adequate, non-destructive instrumentation as state information

@ In the case of Tokamak control: 92 input state features (plus targets)
Optimised Reinforcement Learning algorithms — available

® Need to be easy to tune and some guarantees of convergence

@ Sample-efficiency "less" strict requirement

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024



From Tokamaks to Accelerators...

Fully autonomous control with RL for small low intensity linear accelerator with fast

simulations: ARES @ DESY

ARES a small (~60m) linear electron accelerator.

Goal: Characterize ultrashort e- bunches for applications (advanced & compact long. diag. and accelerating
structures development, FLASH radiotherapy, etc.).

Courtesy O. Stein, J. Kaiser, A. Eichler
ARES Our Testbed ourtesy ein, J. Kaiser, A. Ei

DESY. | CERN ML Coffee: Reinforcement Learning for Accelerator Optimization and Control | Annika Eichler, Jan Kaiser & Oliver Stein | 25 February 2022

ARES is an easy accessible accelerator Properties Target Values Status
posing as a testbed for testing Charge 0.1-100 pC 0.1-50 pC
new developments. Momentum 50 -100 Mev/c 50 — 156 MeV/c
Frequent (almost weekly) beam times Momentum Spread 1,00E-04
at ARES with close collaboration Transverse emittance < 0.8 m.mm.mrad =~ 0.4 m.mm.mrad
with the ARES team. Duration Sub-fs to = 10 fs
MO A o
Ly P =S W = ll'L”in.n-n
Gun Traveling Wave Experimental Bunch High-energy Diagnostics
Gun Diagnostics Structures Chamber Compressor with 2 PolariX TDSs
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From Tokamaks to Accelerators... o)

Fully autonomous control with RL for small low intensity linear accelerator with fast
simulations: ARES @ DESY

Final RL Loop for the ARES EA

Courtesy O. Stein, J. Kaiser, A. Eichler
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From Tokamaks to Accelerators...

Fully autonomous control with RL for small low intensity linear accelerator with fast

simulations: ARES @ DESY

Final RL Loop for the ARES EA

; Experihental
Ch Chamber

Courtesy O. Stein, J. Kaiser, A. Eichler

tCSC on ML 2024, Split, V. Kain,

Human VS- MaChlne EI.O- Optimiser
= ——— Human Operators
g 0.8 RL Agents
?j; 0.6
» Two experienced human operators were tasked to :%’ 0
solve the same problem as three sibling RL agents. < 02
« Initially RL agents converge slightly faster than * 00 i : " e "
operators. Operators take a long time to fine tune Time (min)

to a competitive result but eventually achieve
better result than RL agents.

* RL agent speed severely limited by accelerator
hardware speed in ARES EA. Likely much faster
on other hardware.

* RL agent performance much more consistent than
operator performance.

» Both follow sensible strategies but humans simplify e
(use only two quadrupoles and focus on one
parameter at a time) as opposed to RL agents who

are agnostic to simplicity of solutions. Operators took time ahead of timing them to set up well, though.

DESY. | CERN ML Coffee: Reinforcement Learning for Accelerator Optimization and Control | Annika Eichler, Jan Kaiser & Oliver Stein | 25 February 2022
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One step further... “Talk to the accelerators” &N

N

"Conversational Tuning” for transverse beam parameter tuning at ARES
Obijective: objective = |pg — | + |y — | + |0z — 04| + |0y — oy

Courtesy J. Kaiser et al Prompt engineering very important.

"Q3": -9.00,
Human: Now you will help me minimise a function with five input variables Qi, Q2, CV, Q3 and "CH": -6.00
CH. I have some (Q1, Q2, CV, Q3, CH) pairs and the corresponding function values at those }

points. The samples are arranged in descending order based on their function values, where [N

lower values are better.
Objective value = 2.37

Inputs:
" json Inputs:
{ “Tjson
"Q1": -13.50,
"Q2": -9.00,
"cv": -3.00, "Q1": -13.25,
"Q2": -8.85,
"Cv": -2.80,
"Q3": -8.90,
"CH": -5.70
}
1st Large Language Models

in Physics Symposium Objective value = 2.28

Give me a new sample (Q1, Q2, CV, Q3, CH) that is different from all pairs above, and has a
function value lower than any of the above.

The output should be a markdown code snippet formatted in the following schema, including
the leading and trailing " " json" and "**7":

“"json
{
"Q1": float // First input
"Q2": float // Second input
"CV": float // Third input
Feb 21 ﬁ;én gl(;rzgi "Q3": float // Fourth input
’ "CH": float // Fifth input

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024
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One step further... “Talk to the accelerators”

"Conversational Tuning” for transverse beam parameter tuning at ARES

Prompting scheme: optimisation prompt

|deally expect answer like this:

and focusing.
smoothness.

" "json

{
"Q1": -14.30,
"Q2": -9.70,
"CV": -2.55,
"Q3": -8.10,
"CH": -5.21

}

I suggest decreasing Q1 slightly to bring down the horizontal beam position, while keeping
the other quadrupole magnets at their previous values to maintain the vertical beam position

I also kept the steering magnet settings close to their last values for

Courtesy J. Kaiser

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

1st Large Language Models
in Physics Symposium

Hamburg,
Feb 21-23, 2024
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One step further... “Talk to the accelerators”

"Conversational Tuning” for transverse beam parameter tuning at ARES

GPT 4 Turbo (Optimisation Prompt)

GPT 3.5 Turbo (Explained Prompt)
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1st Large Language Models
in Physics Symposium
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General Al assistants in the control room?

LLMs to use tools...

Using ReACT prompting scheme = Reasoning + Actions: chain-of-thought prompting +

information injection via actions

® Needs large enough models (+ hardware resources)
General Al Assistant for Intelligent Accelerator Operations (GAIA)

Tools

What would a human do...?
DO0CSAddressHelperTool

= Helps looking up DOOCS addresses
= Uses simple sequence matching

LogbookTool

OperationsMeetingSummarizer

© Gives access to the electronic logbook L = Summarizes .pptx files from weekly meetings
= Uses an existing CLI interface to the logbook = Uses basic prompting and its own context

MattermostChatBotTool

AcceleratorLatticeTool Wrappers around Actions and Procedures

= Look up info about the accelerator layout > ReadActionTool, LogbookActionTool, ..
> Uses an already existing /attice file parser > MachineStateProcedureTool, ...

‘ DGEHelperTool l CalculatorTool

J = ...in order to get accurate calculations

Link to talk
DESY. | GAIA| Frank Mayet, LIPS 2024 14 E Mayet’ DESX 2024

tCsC on ML 2024, Split, V. Kain, 13-19 Oct 2024


https://indico.desy.de/event/38849/contributions/162131/attachments/88645/118865/LIPS_2024_Talk_FrankMayet.pdf

General Al assistants in the control room? \/J

Using ReACT prompting scheme = Reasoning + Actions: chain-of-thought prompting +

information injection via actions

® Needs large enough models (+ hardware resources)

[ Terminal
fmayet@desymac42 ~ % ./gaia —verbose True
Welcome to GAIA (served on max-wng@55)

What can I do for you?
Can you summarize the last operations meeting?

> Entering new AgentExecutor chain..

Thought: To answer this question, I need to use the "Operation Meeting Summarizer" tool and
provide the date of the meeting as input. I will ask the user for the date if it has not
been provided.

Action:

{

"action": “User Input Tool",
"action_input": {
"question": “"What is the date of the operation meeting you want me to summarize?"
}
1.

What is the date of the operation meeting you want me to summarize?
29.01.2024

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

[ ] Terminal

Observation: 29.01.2024
Thought: Based on the user input, I can now use the “Operation Meeting Summarizer" tool to
generate a summary of the operations meeting that took place on the given date.

Action:
‘Y json

"action": "Operation Meeting Summarizer",
"action_input": {
"date": "2024-01-29"
}
1.

Observation: The ARES Operation Meeting summary from January 29, 2024 covers [..]

> Finished chain.

F. Mayet, DESY, 2024



What can Al do for accelerators? The vision..

“Autonomous accelerators
|

' Key words: optimal control and optimisation, anomaly detection and prescriptive

| maintenance, surrogate modelling, differentiable simulations, virtual diagnostics,...

| —

i‘ Optimised accelerator design

' Key words: fast-executing simulations for optimisation algorithms, differentiable
| simulations, ...
| _

'Generic Al for efficient research and development 7

' Key words: Al assistants for code development, knowledge retrievable,...

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024
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Future accelerators = Al-ready accelerators @)

N

Input from the FCC operational model discussion:

The business-as-usual solution: FCC just larger LHC

® Brute force scale-up — using helicopters to reduce intervention times, more people,
more sites, ...

® (Financially excluded, luckily)

The elegant solution: FCC to be run like a space telescope.
® Reinvent exploitation paradigm: hierarchical autonomous systems
® Al is key technology

® Management’s preferred option

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024



The (obvious) n

ew equipment p

Think banking apps, heating
systems,....

All digital, all remote controllable/
analysable

Simulations will be key.
Fast-executing, differentiable.

aradigm

2

Exploit automation at every level.

Automation across systems.
Automation within given system.
— different players to implement
automation

& All equipment designed with
LLautomation in mind:

\

| Redundancy, robotics,...

. You cannot go there to fix it...

Digital twins... : . j
g auto-configure, auto-stabilize, auto- <
analyse, auto-recover,... M
/
L \ y L J

tCSC on ML 2024, Split, V. Kain,
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Retrofit the old stuff?

The CERN accelerator complex
Complexe des accélérateurs du CERN

Neutrino
Platform

2010 (27 km)

1142

T2 AWAKE
A
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2010 |
[ 1999 (182 m) | 2020 B1m) | ISOLDE
BOOSTER BB oo,
[ 1972 (157 m) | RIBs : !
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Retrofit the old stuff? &N

The CERN accelerator complex
Complexe des accélérateurs du CERN

Neutrino
Platform

2010 (27 km)

1142
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Retrofit the old stuff? AVa

SHiP
The CERN accelerator complex "
Complexe des accélérateurs du CERN SHiP - Search for Hidden Particles

CMS Start operation ~2030

Neutrino
Platform

BDF/SHiP in ECN3

LHC

New New
Service Building Access Shaft
~ 500 - 700 m? (material only)
........................... Existing ~ &X8M

—— Access Shaft
1142 -

AWAKE Beam Dilution Tccg = .
2016 System 1 - B
H New Target Complex
HiRadMat containing a “thick” ECN3
2011 | -y high-Z target (Mo/W) = Beam Dump
}\ 6 (most of the beam's energy is contained in a dedicated,
~—L MEDICIS shielded environment buit to be handled remotely)

ISOLDE
i S - Many challenges: losses,

<w /C proton sharing,...

n TOF A f
oo Spills for TCC8 [106/year]
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tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024 PoT for TCCB [10%/year]



Efficient Particle Accelerators (EPA) project @ CERN @)

N/ S

— automating accelerator exploitation - Al and classical means

Approved in autumn 2023 after pre-study in Efficiency Think Tank (ETT)

9 work packages: ETT recommendations and controls infrastructure evolution.

WP1 | Wp2 Automated P::g:;r?eter Control &
Dynamic Beam Scheduling Automated LHC Filling L
Optimisation
WP4 | WP5 WP6
Hysteresis Compensation Next Generation Sequencer Efficient Settings Management
e iasn——— ettt e Em b s
WP7 | WP8 WP9
Automated Equipment Testing Automate Equipment | Data Processing Framework
s sttt s stmmmeitron b e st

tCsC on ML 2024, Split, V. Kain, 13-19 Oct 2024 23


https://edms.cern.ch/ui/file/2922514/1/efficiency_think_tank_final_release.pdf

EPA goals &)

Focus is on automation — to increase efficiency, reproducibility, flexibility and performance

WP1 Dynamic Beam Scheduling
@ Automatically and dynamically schedule beams

WP2 Automated LHC Filling

® Automate and standardise LHC beam preparation and filling; reduce impact on fixed target users and LHC
turn-around time

WP3 Automated Parameter Control and Optimisation:
® Automate parameter optimisation, automatically contain drifts
WP4 Hysteresis Compensation:
® Deterministic field control, decouple cycles
WP7 Automated Equipment Testing:
® AccTesting for “all" equipment for injectors and LHC, fully automated Hardware Commissioning
WP8 Automate Equipment:

® Automatic equipment setup; automate fault analysis, recovery; towards preventive maintenance
tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024 17



What are the trends in the community? /)

/Machine Learning Applications
/ for Particle Accelerators

"HOME CONFERENCES CONTACT US

Topics of ML workshop '24

We are pleased to announce the 4th ICFA Beam Dynamics Mini-Workshop on Machine
Learning for Particle Accelerators will be held in Gyeongju, South Korea. The goal of this
workshop is to help build a world-wide community of researchers interested in applying
machine learning techniques to particle accelerators.

The workshop will consist of six topics:

1. Analysis & Diagnostics
4TH MACHINE LEARNING APPLICATIONS FOR PARTICLE ACCELERATORS (2024), 2. Anomaly Detection / Failure Prediction
ENFCRIEL, S CLRIHEE, ek ERY Lk 3. Infrastructure / Deployment Workflows
4. Optimization & Control
3RD ICFA BEAM DYNAMICS MINI-WORKSHOP ON MACHINE LEARNING APPLICATIONS 5. Modeling Approaches
FOR PARTICLE ACCELERATORS (2022), CHICAGO, USA. HOSTED BY BNL. 6. Lessons Learned
Tutorials:

2ND ICFA MINI-WORKSHOP ON MACHINE LEARNING FOR CHARGED PARTICLE
ACCELERATORS (2019), VILLIGEN, SWITZERLAND. HOSTED BY PSI.

1. Reinforcement Learning
2. Model Adaptation / Up-keep

1ST MACHINE LEARNING APPLICATIONS FOR PARTICLE ACCELERATORS (2018), i i icti
L AT, (A o 3 SILLes, 3. Transformers for Timeseries Prediction

Talks will include both accelerator physicists and computer scientists. This workshop has the
following goals:

¢ Collect and unify the community’s understanding of the relevant state-of-the-art ML

Workshop 2025 will be at CERN! techniques.

* Provide a simple tutorial of machine learning for accelerator physicists and engineers.
o Seed collaborations between laboratories, academia, and industry.

Please contact the organizers if you are interested in attending.

tCsC on ML 2024, Split, V. Kain, 13-19 Oct 2024



Accelerator ML community - Trends...

Focus shifting slowly from R&D to Al at scale with full life cycle management.

— Infrastructure/Deployment Workflows (MLOps) one of the longest sessions at last
workshop

— Discussion about standards: e.g. optimisation problem definition standards

I

— Non-trivial life cycle management questions becoming important: “continual learning’

® Full tutorial about it.

The big new theme: LLMs...PACuna, Logbook search, Al assistants in the control room

Progress on all fronts...

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024
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Bayesian Optimisation (BO)

Majority of talks in "optimisation and control” session about

BO

Surrogate Model

Acquisition Function

Acq. Optimization

\

Test Point 4
PR

Observation Data

Step 1

15

1.0 A

0.5 4

> 0.04
_0_5 -
-1.0 4

Unknown function

(}‘P model

ons

-1.5

X

0.0

0.2

0.4

x

0.6

] I Acquisition function I

0.8

1.0

 Recent publication of review paper:
Bayesian optimisation algorithms for accelerator physics
 Phys. Rev. Accel. Beams 27, 084801

tCSC on ML 2024,

Split, V. Kain,

13-19 Oct 2024
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State-of-the-art BO:

® Model-based priors for various
applications

@ Multi-fidelity BO for laser plasma
accelerators

® SafeOpt to include safety constraints -
faster convergence with ModSafeOpt

® Information-based Bayesian Optimisation
with virtual objectives

® ...
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Common tools and frameworks were key

State-of-the-art BO with BoTorch
® GPU accelerated

Infrastructure
Frameworks & building blocks

CERN @ versatile

Acc-Py ﬁ
“accelerating Python”

Classical automation concepts UCAP
i > Full integration of Python Unified Controls Acquisition & Processing
> Sequencer: programmatic

with control system

» Online data acquisition,
equipment access (set / get),
app development, ...

» Python package index

® fully integrated with PyTorch,
GPyTorch

execution of tasks
> High-level parameter
models :
> AccTesting |

> Virtual device service
» Event-based, online data transformations

Further evolution with EPA

EPA: sequencer 2.0, equipment

testing, efficient settings management . .
e e 2 Enabling automation

with Al / ML
Auto-pilots & optimizers - = ..

GEOF.F ST - Machine Learning Platfor
. . . Generic Optimization Depl & inference of Physcis
> Facilitate implementation Framework and : ‘E/P oymfnt inference oj
of control problems (Faliia) (ML) models s
> Exploit & expose features > Train, store & share ML N
of control architecture acc-geoffducap models with VC ' @ python Bavesian OpTiMizATION IN PYTORCH

o . [ )
> Maintain uniformity across Framework for e E > Language agnostic o
complex optimization & s > Available in control s
control via UCAP vespoptimierconverter room

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024




Differentiable simulation codes &N

Optimisation algorithms work best and are most sample-efficient with gradient

information of the objective function.

Cheetah — A High-speed Differentiable
Beam Dynamics Simulation for

Machine Learning Applications -

4th ICFA Machine Learning Workshop

——— =

Gradient-based Tuning

» Tune magnet settings or lattice parameters using the gradient of the
beam dynamics model computed through automatic
differentiation.

« Seamless integration with PyTorch tools tuning neural networks.

» Becomes very useful for high-dimensional tuning tasks (see
neural network training).

o000

ares_ea.AREAMQZM1.k1 = nn.Parameter(0.0)
ares_ea.AREAMQZM2.k1 = nn.Parameter (
ares_ea.AREAMCVM1.angle = nn.Param 0
ares_ea.AREAMQZM3.k1 = nn.Parameter(0
ares_ea.AREAMCHM1.angle = nn.Parameter(0.0
optimizer = Adam(ares_ea.parameters())

for _ in range(42):
ougoing = ares_ea.track(incoming)
loss = loss_fn(outgoing)

Deviation from target /
ground truth

loss.backward( )
optimizer.step()
Actuator / unknown variable optimizer.zero_grad()

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

A physics-informed prior can help improve the performance
of BO by preventing over-exploitation.

Cheetah’s differentiability allows efficient acquisition
function optimisation using gradient descent methods in
modern BO packages like BoTorch.

Has well-defined behaviour and does not need data to train
like neural network priors.

Can be used in combination with gradient-based system
identification to overcome model inaccuracies.

Objective value

—— Model

Input variable
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If you have differentiable codes.... /)

Example: generative phase-space reconstruction in 6D

These measurements are normally rarely done, too time consuming...

E.g. Spallation Neutron Source (SNS): 5 X 10° measurements over 36 h

Neural Network
Parameterized Transform

Randomly Generated
Samples

X ~N(0,1)
X €RS

Reconstructed 6° — argminl $
Initial Distribution 0

i 011 =0, — h(Vil)
Optimization Step

Y™ =g(X;6")

Proposed Initial Differentiable Accelerator Simulations

Particle Distribution

Transverse Deflecting
Q1 Q@2 Q3 Q4 Cavity (vertical) Dipole YAG2
YAG1
Focusing Scanning
Quadrupole: Quadrupol Ly = f(YZ, k'n)

Gradient calculation )

Loss Function

N,I,J
— (,3) _ ((ird)
L= IR - |

Image Difference

Courtesy R. Roussel et al arXiv:2404.10853

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

ki (1/m?)

T.D.C.: off
DIPOLE: off

D;I;gLCE:; . .
- -
Tested at Argonne Wakefield
Accelerator (AWA):

only 20 measurements for full 6 D
reconstruction.

T.D.C.: off
DIPOLE: on

T.D.C.:on
DIPOLE: on



RL4AA - workshop &N

Pushing the frontiers of RL for accelerators — autonomous accelerators.

. . { |
Reinforcement Learning for RLAAA
Autonomous Accelerators l 1

RL4AA Collaboration

The Reinforcement Learning for Autonomous
Accelerators international collaboration aims to
consolidate the existing knowledge in the

‘ community, exchange experience and ideas, and
3 work together towards accelerator-specific

o 2

J O I N ow Salzburg, Austria www.youtube.com

5-7 February 2024 solutions using the latest advances in RL
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RL @ CERN - all trained on simulation or surrogate

PS

> Correct RF phase & voltage for uniform
bunch splitting (LHC beams)

» Successful sim2real & fully operational

PS to SPS

> Adjust fine delays of SPS
injection kicker

> RL agent (PPO) trained on

> Multi-agent (SAC) & CNN for initial guess data-driven dynamics model
> Next: continuous controller (UCAP) > Ready for sim2real test
A. Lasheen, J. Wulff M.Remta, F Velotti = = s, s =
LINAC3 / LEIR SPS

> PhD project (B. Rodriguez):
control LINAC3 cavities for optimal
injection efficiency into LEIR

> RL state based on VAE-encoded
Schottky spectra

Time bin

> Agent trained on data-driven
dynamics model

tCSC on ML 2024, Split, V. Kain,

Recorded Reconstructed

0

> Steer DC beams in TT20 TL using split-
foil secondary emission monitors

20

40

60 }

» Works well in simulations, with noise
. and varying emittances

A
g
g .. z
'y - . 204
0 100 200 0 100 200
Frequency bin Frequency bin 1 Mw M
of

V. Kain, N. Madysa ©F % RL® %" N Bruchon, V. Kain

80 108

> Ready for sim2real test

Courtesy M. Schenk
13-19 Oct 2024



Advanced RL concepts %)

How to deal with time-varying systems, partially observable systems (POMDP).

META-RL i.e. MAML

Require p(9): distribution over tasks —— metaioaming
Require a, f: step size hyper-parameters 9 ===+ learning/adaption
1. randomly initialise 6 VZ,
2. while not done do
3.  sample batch of tasks 7 ; ~ p(9") VL or
4. foreach J;do VL N
5 Sample with policy : D7 ~ Dy o
6. Evaluate V. Z(6, 2 ) with respect to K rollouts e "o 0
7 Compute adapted parameters with gradient descent: ¢, = 0 — a V,Z (0, 9;.)
Reinforcement 8 Sample with new policy ¢: DE" ~ Do
=" Learning Land i i
9. Update « 0 — ﬂngi.Z(qﬁi, i)

< 9i(0) = Sr 4y T . Z R(s;, a)] 5 7,
t=1

From Mykel Kochenderfer

META-RL allows for few shot adaptation
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META-RL for accelerators &N

Tested algorithm on for AWAKE electron line steering at CERN.

18 MeV e- beam
D L

Sample complexity of different RL algorithms on the AWAKE problem

104 ]

103 A

Sample complexity (Log Scale)

TRPO PPO MPO SAC TD3 NAF MBPO GM-MPC MAML
Algorithms
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Include the physics you know... PINNs &)

PDEs play a crucial role in many applications in accelerators...

E.g. Finite elements modelling (FEM) methods are standard solvers for various design
question: magnets and other accelerator components

FEM limitations when used for design optimisation: computational cost depending on mesh
size.

Can solve PDEs with NNs

— Physics-inspired NNs PINNs: use automatic differentiation and add terms in loss function

{Compare to} | Automatic!

itraining data; | Diff. |
:L 7 [ H
H ll(llltl H ]
‘ . output H £y} E E U0 i
layer E on ! i Uy i
H ) e
A% | i 1| uge | | Minimization
] oy H 1 v H
KE@—— @)= owy) | =] 1y | | =0
X i o i
\ H \ H

df
Example: = = Rf(1)(1 — f(1))

df, 7
= to be minimised: Lypg = — — Rfn(D(1 = fin(@)  NERESD/ o e
dt Liw(6) + Lppp(6) = L(0)
Total loss function: L = L_,;,.0iion + LopE - '
From arXiv:2403.00599
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Example: PhyLSTM hysteresis compensation @

Hysteresis of magnets in the SPS has impact on slow extracted spill quality

lell Effects of minor field perturbations on slow extracted spill

le-3
] L 1.8175 L3 —
— s ///—-—::-"/// 1.8150 2021 <
—— Main dipole field rl. c

] - 2.02

4 1.801 2 2
/é : - 1.80 S
T - = e
o !: - B 1 [
% 3 - —1.351 Q
* z o ®
> - 1.35 & K] c
JOE) Slow extraction ,8— % 0.90 :
= 2 start © a L. 1 o
£ L0905 A -1z
s s 0 // z
oM (]
B A=6E4T 0.45 - r—2¢
1- - : . o
B A=-6E-4T Beam dump - 0.45 Transfer function /- B -
l —— Measured field L _ 33
0.06 1 ' Fle.ld offset . ' (I

0 : : : : ——1 0:06 0 1000 2000 3000 4000 5000 6000

0 2000 4000 6000 8000 10000

Current [A]

Time [ms]

Effects on slope of intensity decrease with varying main dipole tield
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Example: PhyLSTM hysteresis compensation &N

Hysteresis modelling rather challenging, no closed form solution.

First idea: use Bouc-Wen model ay(t) + b(y,y) + r(y, v, y(r)) =I'x(¢), y + g =T'x
Input x = {1,dl/dt}, outputy = {B,dB/dt}

{212, 23}
b LSTM3 7

Z={B 8,1}
L1 = MSE(21(01) — 1) + MSE(22(61) — ¥2) y = (8.8} B -N-3
Lo = MSE(21(61) — 22(61))
L3 = MSE(22(61) + MLP(g(61,62),X1)) T &
L4 = MSE(r(61,03) — 23(61)); F = f(®);® = {Azp, r} LSTM1 Z d/dt//;’ ‘ 7 3
% S+ =P Lo
Lo P
Ltot =aLly +BLy +7vL3 +NLy LIS

Z2
LSTM2 g MLP g+ TIX |\
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State-of-the-art hysteresis modelling &)

Best results with transformer-based timeseries forecasting models (purely data-driven):
Temporal Fusion Transformer

B(to, ceoy tN), I(to, ceey ZN+M) - B(tN+19 ERX tN+M)

——————————

2500 ms

—— Fixed target supercycle —— Fixed target + LHC supercycle

©
o

®
[l

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

X 1
5801 & pe® o *40 oo . . . .
8 MR AR RO 5 ot e et 4
| —— LHC1 > {
I MD1 3 40 ¢ - o ® ® Spill = 75%
H SFTPRO1 = . & Spill <75%
---! 777" prediction - 65 . * Field compensation ON
/: : : ! —— Supercycle change
Predict Trim Cycle start 60 1 : - ,
0 5 10 15

Time elapsed [min]

Feed forward correction scheme in
control room
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Diagnostics and Analysis - Computer vision EN

Variational auto-encoders for radiation hard Optical Fibre Imaging — next generation
beam profile monitors?

OUTPUTS

(%)
Z
o
G
(a]
w
[+ 4
o
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Diagnostics and Analysis - Computer vision &)

Example: bunch-by-bunch tomographic reconstruction in the LHC; ensemble of auto-
encoders trained in simulation on turn-by-turn longitudinal bunch profiles

Training Data Generation Tomoscope Evaluation
Bunch Distribution at Inject in LHC, Annotations e MAE: 0.001 (1%o)
SPS flat top track 500 turns Supervised Leaming e Visually indistinguishable

Phasespace Bunch Parameters

:gﬁ:z: :.nsizgts?ty / \ Bunch Parameters Waterfall ID: 133 Energy projection Time projection
—— True — True
~SPS RF Voltage —_— | Bunch length & intensity Pred \ Pred
~Distribution () 3 ~Phase Error \\ J
~Energy Error Phase & Energy error [\
~LHC RF Vollage\:/ ’ [ /\

Convolve with TF, Waterfall Bunch Profiles
slicing, paddin 1-00@ image

Pred PS MSE: 5.90e-06

/
Difference True PS @ turn 120

&

.
g -
-
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Diagnostics and Analysis - Computer vision

Example: bunch-by-bunch tomographic reconstruction in the LHC; ensemble of auto-
encoders trained in simulation on turn-by-turn longitudinal bunch profiles

Training Data Generation Tomoscope Evaluation
Bunch Distribution at Inject in LHC, Annotations e MAE: 0.001 (1%o)
SPS flat top track 500 turns Supervised Leaming e Visually indistinguishable

Phasespace Bunch Parameters

Waterfall ID: 133 Energy projection Time projection

~Bunch Length
~Bunch Intensity
~SPS RF Voltage
~Distribution ()

Bunch Parameters
— True

Bunch length & intensity \ Pred /\
\

Phase & Energy error [ \
[ ®

f J [
/ \ Save Data

| Acquisition | Phase Space Injection Errors |~ Voltages = Bunch Features

/ \
[ \\ Load Locally Load From Fesa
1 - -~ = Edit Internal Settings | |Clear All Data
True PS @ turn 12 Select File(s) | | Last Injection | |Start Subscription| |Stop Subscription d

Acquisition Parameters

X

ML LHC Tomography (on cwe-513-vpl804.cern.ch) = @

~Energy Error
~LHC RF Voltage

Convolve with TF, Waterfall Bunch Profiles
slicing, paddin: 1-color image Model Input Difference

w
»

«— -
50 .

1: httos:/fiournals.aps Bta/prablabstract/10.1103/PhvsRevAccélBeams. 26.114602

¢ * B1 Acquisition )-30 00:12:39| B1 1st Bucket 1181 | B2 Acquisition )-30 00:15:32 B2 1st Bucket 1181

Bunch Profiles

Bunch Profiles (Beam 1) Bunch Profiles (Beam 2)

300 300
L —
2 200} 2 2001
£ £
S S
= =2
c c ]
= 100 = 100 |
E =
of ofF
L . L L L
0 1 2 0 1 2
Time (ns) Time (ns)
B1 Bunch Index |0 v B2 Bunch Index |0 v
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Final words...

CONCLUSIONS

This paper has described one methodology suitable for the introduction of full automa-
tion. Barriers are recognized to exist but are not unsurmountable. Often all that is
needed to overcome these barriers is the belief that the process can and should be fully

automated.

CERN-ISR-CO/80-29
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CE/RW
\

What’s next... )

Al is changing how we exploit particle accelerators and will drive how we build new ones

Many different use cases at particle accelerators, for many different types of Al/ML
algorithms.

In this lecture series will focus on optimisation and control aspects.
You will get an introduction into

® Bayesian Optimisation

® Reinforcement Learning
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