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Bayesian Optimisation
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Basics
The generic optimisation problem: 

                subject to      

where  is the (scalar) objective function to be minimised or maximised,  is the vector 
of unknowns or parameters and  are constraint functions. 

x* = argmin f(x)
ci(x) = 0
ci(x) ≥ 0

f(x) x
ci
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Basics
The generic optimisation problem: 

                subject to      

where  is the (scalar) objective function to be minimised or maximised,  is the vector 
of unknowns or parameters and  are constraint functions. 

Convexity 

Many algorithms work best if  is convex:  

local minimum = global minimum 

Mathematical definition for   , a convex subset: 

for all   

 

x* = argmin f(x)
ci(x) = 0
ci(x) ≥ 0

f(x) x
ci

f(x)

x1, x2 ∈ X

0 ≤ t ≤ 1

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)
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Convexity
	is	convex:	if	the	line	segment	between	any	two	points		 ,	 	is	either	equal	or	above	
	for	

f(x) f(x1) f(x2)
f(x) x = tx1 + (1 − t)x2

By Eli Osherovich - Own work, CC BY-SA 3.0,  
https://commons.wikimedia.org/w/index.php?curid=10764763
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Why Bayesian Optimisation (BO)?
Non-parametric, global black-box optimisation for non-convex problems. 

Key elements: probabilistic surrogate model of objective function, Bayesian statistics, 
optimisation of Acquisition Function 

Optimisation is a sequence of decisions: at each iteration we must choose where to 
make the next observation and then terminate depending on the outcome. 

Sample-efficiency: number of iterations to be kept low  cost of interaction with 
accelerator high

→
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Bayesian statistics for sample-efficient optimisation

Use probabilistic model as surrogate of objective function  learn probability function 
given observations 

Bayesian optimisation relies on Bayesian inference. 

Assume that observation  at  is distributed according to some observation model  
depending on the underlying objective function . 

  

Bayesian inference approach: all unknowns are treated as random variables  use 
beliefs about quantities (probability distributions)  inference is then inductive process: 
beliefs are iteratively refined with observed data   

→

y x ϕ
f(x)

p(y |x, ϕ)
→

→
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Bayesian statistics for sample-efficient optimisation

Start with so-called prior distribution …plausible values for  before observing 
any data. (The real measurements are ,  is one or more values  = ) 

We update our prior through observation to get the posterior distribution using Bayes’ 
rule: 

 

Example for  with additive noise:   

p(ϕ |x) ϕ
y ϕ ϕ f(x)

p(ϕ |𝒟) = p(ϕ |x, y) =
p(ϕ |x)p(y |x, ϕ)

p(y |x)

p(y |x, ϕ) y = ϕ + ε

likelihood or observation model

marginal likelihood, normalisation constant

prior

Example for additive Gaussian noise: y = ϕ + ε
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Example: Bayes’ rule for linear regression
Bayesian analysis for standard linear regression with Gaussian noise 

                     and ,    

The likelihood: 

 

               

              

f(x) = xTw y = f(x) + ε ε ∼ 𝒩(0,σ2
n)

p(y |x, w) =
n

∏
i=1

p(yi |xi, w) =
n

∏
i=1

1

2πσn

exp(−
(yi − xT

i w)2

2σ2
n

) =
1

(2πσ2
n)n/2

exp(−
1

2σ2
n

|y − XTw |2 )

= 𝒩(XTw, σ2
nI)
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Example: Bayes’ rule for linear regression
Bayesian analysis for standard linear regression with Gaussian noise 

                     and ,    

The likelihood: 

 

               

              

Use zero mean Gaussian prior with covariance matrix  for weights :  

f(x) = xTw y = f(x) + ε ε ∼ 𝒩(0,σ2
n)

p(y |x, w) =
n

∏
i=1

p(yi |xi, w) =
n

∏
i=1

1

2πσn

exp(−
(yi − xT

i w)2

2σ2
n

) =
1

(2πσ2
n)n/2

exp(−
1

2σ2
n

|y − XTw |2 )

= 𝒩(XTw, σ2
nI)

Σp w w ∼ 𝒩(0, Σp)
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Example: Bayes’ rule for linear regression
Bayesian analysis for standard linear regression with Gaussian noise 

                     and ,    

The likelihood: 

 

               

              

Use zero mean Gaussian prior with covariance matrix  for weights :  

Posterior with Bayes’ rule:   

 

                  …Gaussian!  

f(x) = xTw y = f(x) + ε ε ∼ 𝒩(0,σ2
n)

p(y |x, w) =
n

∏
i=1

p(yi |xi, w) =
n

∏
i=1

1

2πσn

exp(−
(yi − xT

i w)2

2σ2
n

) =
1

(2πσ2
n)n/2

exp(−
1

2σ2
n

|y − XTw |2 )

= 𝒩(XTw, σ2
nI)

Σp w w ∼ 𝒩(0, Σp)
p(w |y, X) ∝ p(y |X, w)p(w)

p(w |X, y) ∝ exp (−
1

2σ2
n

(y − XTw)T(y − XTw)) exp (−
1
2

wTΣ−1
p w)

∝ exp (−
1
2

(w − w̄)TΣ−1
w (w − w̄)) 𝒩(w̄, Σw)
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Example: Bayes’ rule for linear regression
 

 

We need the posterior for inference through the predictive distribution for : 

average over all linear models 

             

               = …and this again  

Gaussian! 

w̄ = σ−2
n (σ−2

n XXT + Σ−1
p )−1Xy

Σw = (σ−2
n XXT + Σ−1

p )
−1

f(x*)

p( f* |x*, X, y) = ∫ p( f* |x*, w)p(w |X, y)dw 𝒩(x*Tw̄, x*TΣwx*)
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Gaussian processes
The surrogate model: 

๏ Key is “sample efficiency”: extract a lot of information from a small number of data points 

๏ Produces explicit uncertainty estimation to allow “global optimisation” 

Gaussian processes = a class of nonparametric regression models; extension of the 
multivariate normal distribution for modelling functions on the infinite domains. 

๏ Instead of a discrete mean  and covariance matrix , will have mean function  and 
covariance function or kernel function   

๏ With data at  of objective function , the distribution of  is also multivariate 

 where  and matrix  

μ K μ(x)
k(x, x′ )

x, ϕ = f(x) f(x) ϕ

p(ϕ |x) = 𝒩(ϕ; μ, Σ) μ = 𝔼[ϕ |x] = μ(x) Σ = 𝖼𝗈𝗏[ϕ |x] = K(x, x)
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Gaussian processes
Use Gaussian process to describe distribution of functions. 

A Gaussian process is completely defined by its mean function  and covariance function 
 

                

                

                

To predict test point  at  from posterior with given data : 

 , assume joint prior distribution of  

   

 

μ(x)
k(x, x′ )

μ(x) = 𝔼[ f(x)]
k(x, x′ ) = 𝔼[( f(x) − μ(x))( f(x′ ) − μ(x′ ))]
f(x) ∼ GP(μ(x, k(x, x′ )))

f* x* X, Y

p( f* |x*, X, Y) = 𝒩(μ * ,σ*2) 𝒩 (0, [ K(X, X) K(X, x*)
K(x*, X) K(x*, x*)])

→ μ* = K(x*, X)K(X, X)−1Y
→ σ*2 = K(x*, x*) − K(x*, X)K(X, X)−1K(X, x*) Beware!!:  K−1 ∼ 𝒪(N3)
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Gaussian processes
In case prior   

 

Example:

μ ≠ 0
μ*(x) = μ(x*) + K(x*, X)K(X, X)−1(Y − μ(X))

Prior Posterior mean and confidence   
with 5 data pointsPrior

Some samples of posterior  
distribution
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Modeling with Gaussian Processes
The fidelity of model of the objective function is key for optimisation performance.  

It depends on the choice of prior   and as it turns out mainly about the 
… prior mean only enters as a shift. 

Covariance function also called kernel, or similarity function: measures how similar pairs 
of input data points are to each other.  

            i.e. measures correlation between two function values  and : 

The art is in choosing a kernel the best represents the correlation in the data. 

Picking a kernel also sets the characteristics of the function. 

Different kernels have their own different hyper parameters. 

→ μ(x), k(x, x′ )
k(x, x′ )

ϕ ϕ′ 



tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Linear and polynomial kernels
Linear kernel: computationally efficient and interpretable models; but limited 
expressiveness. 

        

One step further: Polynomial kernel; offers more flexibility; 

choosing appropriate degree  can be difficult 

        

klinear(x, x′ ) = θ ⋅ xTx′ + c

d
kpoly(x, x′ ) = (xTx′ + c)d

Prior of linear kernel with  and 5 samplesc = 0

Prior of poly kernel with  and 5 samplesd = 2
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Matern kernel
Characterised by two parameters the length scale  and the smoothness parameter . 

In the most general form: 

            is the distance between two points,   

is the gamma function  and  the modified Bessel function. 

There are closed-form solutions for , ,  and .  

        , ,  

       

l ν

kMatern(r) =
21−ν

Γ(ν) (
2νr
l )

ν

Kν (
2νr
l ) r Γ

Kν

ν = 1/2 3/2 5/2 7/2

k1/2(r) = exp (−
r
l ) k3/2(r) = (1 +

3r
l ) exp (−

3r
l )

k5/2(r) = (1 +
5r
l

+
5r2

3l2 ) exp (−
5r
l )

ν = 3/2
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Special Matern kernel: Radial Basis Function kernel

Matern kernel for  becomes  

For  becomes very smooth, equivalent to the Radial Basis Function (RBF) kernel 
anyway 

Other name squared exponential kernel 

Probably the most frequently used kernel 

Captures smooth and continuous functions 

For non-linear relationships between inputs 

and outputs.  

Captures complex patterns. 

Struggles with discontinuous or highly oscillatory 

functions.

ν → ∞ kRBF = exp (−
1
2

r2

l2 )
ν > 5/2

Prior  with RBF kernel l = 1
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Periodic kernel
Kernel designed to model periodic patterns in data 

                   

where  represents the period of the periodic pattern and  is again the length scale 
parameter.

kperiodic(x, x′ ) = exp (−
2 sin2(π |x − x′ | /p)

l2 )
p l
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Spectral mixture kernel
Simple and powerful idea: parameterise a space of 
“stationary" covariance functions by some suitable 
family of mixture distributions (e.g. Gaussian Mixture) in 
the Fourier domain representing their spectral density. 

The kernel is then the Fourier transform of this. In case 
of Gaussian Mixture, convenient Fourier transform: 

           , where  

 is the weight of the th component,  

 is the length scale and  is the number of mixture 
components. (Useful number is ) 

kSM(x, x′ ) =
n

∑
i=1

wi exp ( −2π2 |x − x′ |2

λ2
i )

wi i
λi n

n = 5

Prior  with 3 components
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Combining kernels
Kernels can be multiplied 

e.g. multidimensional products:  

      Example: locally periodic  

       

and summed and scaled!

kproduct(x, y, x′ , y′ ) = kx(x, x′ ) ⋅ ky(y, y′ )

kperiodic(x, x′ ) = exp (−
2 sin2(π∥x − x′ ∥/p)

l2 ) ⋅ exp (−
1
2

∥x − x∥2

l2 )
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Effect of hyperparameters: e.g. length-scale

Each kernel has hyperparameters that control overall function behaviour: e.g. …length 
scale 

As example…”squared exponential covariance”:  

Perfect correlation locally, and decays with a length-scale.

l

k(x, x′ ) = exp(−
1

2l2
|x − x′ |2 )

from R&W 2006
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Fitting a Gaussian Process to data
How to determine the hyperparameters  of the kernel?  Fitting 

As usual: Maximum Likelihood Estimation 

           

As likelihood is Gaussian log likelihood can be calculated analytically: 

          

         

θ →

θ* = arg max log p(y |θ, X)

log p(y |θ, X) = −
1
2

yTK−1y −
1
2

log |K | −
n
2

log 2π
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Next step: Acquisition Functions

Optimisation is a sequence of decisions: at each iteration we must choose where to 
make the next observation and then terminate depending on the outcome. 

 Building and appropriate acquisition function! Again hyperparameters…→
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Acquisition Functions
The acquisition function “looks" at the surrogate model of the objective function and 
determines what areas in the domain  are worth exploring.  

Note mostly BO is formulated as maximisation problem.  Acquisition Function should 
be constructed such that it assumes high values where either  is optimal or that we 
have not looked at yet.  

 in BO, it is not the surrogate model of  that is maximised directly, but AF.  

The Acquisition Function will have to deal with the trade-off between exploration and 
exploitation.  

f(x)

→
f(x)

→ f(x)
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Upper Confidence Bound (UCB)
Probably the simplest acquisition function: contains explicit exploitation ( ) and 
exploration terms ( , standard deviation). 

Hyperparameter , often also called  guides exploration vs. exploitation.   

   

       

μ(x)
σ(x)

λ β λ = β

a(x; λ) = μ(x) + λσ(x)

λ = 1 λ = 0.5 λ = 5
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Acquisition Function: Expected Improvement EI (1)

First need to introduce Probability of Improvement PI  

“Improvement" I: find  and so far best solution is : 

                 ….the maximum between  and  

 assigns the probability of .  

max f(x) x*
I(x) = max( f(x) − f(x*),0) f(x) − f(x*) 0

PI(x) I(x) > 0
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Acquisition Function: Expected Improvement EI (1)

First need to introduce Probability of Improvement PI  

“Improvement" I: find  and so far best solution is : 

                 ….the maximum between  and  

 assigns the probability of .  

Can be calculated analytically in case of surrogate models with GPs:  

Reparameterisation trick:       

 equivalent with probability .  

Say value of  corresponds to  at location , then need to simply find probability of 
all . 

max f(x) x*
I(x) = max( f(x) − f(x*),0) f(x) − f(x*) 0

PI(x) I(x) > 0
f(x) ∼ 𝒩(μ(x), σ2(x))

z ∼ 𝒩(0,1) → f(x) = μ(x) + σ(x)z z =
f(x) − μ(x)

σ(x)

PI(x) = P(I(x) > 0) P( f(x) > f(x*))
f(x*) z0 x*

z > z0
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Acquisition Function: Expected Improvement EI (2)

Thus: 

        =  =  

Expected Improvement : with  

       

       …first integral zero because   

     

PI(x) = 1 − CDF(z0) CDF(−z0) CDF ( μ(x) − f(x*)
σ(x) )

EI(x) ϕ(z) =
1

2π
exp (−z2/2)

EI(x) ≡ 𝔼[I(x)] = ∫
∞

−∞
I(x)ϕ(z)dz

EI(x) = ∫
z0

−∞
I(x)ϕ(z)dz

=0

+ ∫
∞

z0
I(x)ϕ(z)dz I(x) = max( f(x) − f(x*),0)

from https://ekamperi.github.io/
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Acquisition Function: Expected Improvement EI (3)

      

              

               

              

EI(x) = ∫
∞

z0
I(x)ϕ(z)dz = ∫

∞

z0
(μ + σz − f(x*)) ϕ(z)dz

= (μ − f(x*))∫
∞

z0

ϕ(z)dz +
σ

2π ∫
∞

z0

ze−z2/2dz

= (μ − f(x*)) CDF ( μ − f(x*)
σ ) +

σ

2π ∫
∞

z0

d (e−z2/2)
dz

dz

= (μ − f(x*)) CDF ( μ − f(x*)
σ ) + σϕ ( μ − f(x*)

σ )
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Acquisition Function: Expected Improvement EI (4)

       

Can also add extra hyperparameter to tune exploitation vs exploration.

EI(x) = (μ − f(x*)) CDF ( μ − f(x*)
σ ) + σϕ ( μ − f(x*)

σ )
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Constraints?
 can be easily extended to include inequality constraints.  

                                

Idea: learn  as GP as well as  (i.e. ), and then weigh  with probability of 
constraint satisfied.  

                            

                            

In case of multiple inequality constraints and with the assumption that the constraints are 
conditionally independent given x 

   

                           

  

EI(x)
max
c(x)≤λ

f(x)

f(x) c(x) c̃(x) EI(x)

PF(x) := Pr[c̃(x) ≤ λ]
EIC(x) = PF(x) ⋅ EI(x)

PF(x) = Πk
i=1p(c̃i(x) ≤ λi)
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Proximal biasing
Particle accelerator optimisation often requires incremental traversal of parameter space 
to maintain accelerator stability. 

Ensure that exploration not in too large steps, could be problematic for equipment,… 

 weight acquisition function by distance to previous set point.  

                     (only valid for )

→

̂a(x) = a(x) ⋅ exp (−
(x − x0)2

2β2 ) a(x) ≥ 0

R. Roussel 

R. Roussel et al , NeurIPS 2021
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Uncertainty sampling and Bayesian Exploration

Acquisition function for system identification 

            ….adaptive sampling 

 Bayesian exploration: 

a(x) = σ(x)

→

https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_82.pdf
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Majority of talks in "optimisation and control” session about 
BO 

 

Bayesian Optimisation (BO) BO

State-of-the-art BO: 
๏ Model-based priors for various 

applications 

๏ Multi-fidelity BO for laser plasma 
accelerators 

๏ SafeOpt to include safety constraints - 
faster convergence with ModSafeOpt 

๏ Information-based Bayesian Optimisation 
with virtual objectives 

๏ … 

Recent publication of review paper:  
Bayesian optimisation algorithms for accelerator physics 
Phys. Rev. Accel. Beams 27, 084801
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Example: BO with neural network mean priors

Including prior information through historical data not 
efficient with GPs. 

 Modify  in  

Instead of constant prior in GP  GP becomes model 
of model  much more sample-efficient 

Model of non-constant mean  from simulation, 
ANN of historical data, other GP,… 

→ p(A) p(A |B) ∝ p(B |A)p(A)

→
→

μ(x)
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Example: BO with neural network mean priors

Example from ATLAS  

๏ Argonne Tandem Linear Accelerator System for study of low-energy nuclear physics 
with heavy ions 

๏ Optimise transmission to target: 5 DOF 

✴ Trained ANN from previous 3k dataset of  run and used it for optimising  run 
Argonne Tandem Linear Accelerator System is a US Department of Energy User Facility dedicated to the study of low-energy nuclear physics with heavy ions.


14N 16O

Courtesy T. Boltz et al, arXiv:2403.03225
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Example: Continuous control with BO  ABO→
Controlling the  Hz noise in the slow extracted spill to the North Area Experimental 
Hall at CERN SPS. 

n × 50

Modulate voltage of main quadrupoles at  Hz to 
compensate. 

Spill noise changes over time following the European grid. 

 adaptive continuous control, Adaptive Bayesian Optimisation 

Model objective function  as . Spectral mixture kernel  for 
 and Matern for control parameters 

Kernel: 

n × 50

→

f f(x, t) S
t

k([t1, x1], [t2, x2]) = θk × S(t1, t2) × M(x1, x2)

Will be key for:
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Example: info-based BAX - virtual objectives
Example for emittance tuning 

๏ BAX (Bayesian Algorithm eXecution): https://willieneis.github.io/bax-website/ 

๏ Minimum emittance important for many applications: e.g. determines brightness of X-
rays in FELs 

๏ Classical methods slow due to multi-point queries: quadrupole scans for emittance 
evaluation

 Virtual emittance scans on posterior samples of GP 

as input to acquisition function optimisation 


 choose queries (settings) to maximise information 
and minimise emittance

→

→

Courtesy S. Miskovich et al
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Example: info-based BAX - virtual objectives
Example from noisy LCLS simulation @ SCLAC

Proxy for 

convergence

Courtesy S. Miskovich et al
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BoTorch - basic, basic intro

Use BoTorch 

๏ Single/multi-objective Bayesian optimisation (serial and parallel) 

๏ Constraints 

๏ Proximal biasing 

๏ Can incorporate pyTorch Modules 

๏ GPU accelerated
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BoTorch - basic, basic intro
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BoTorch - basic, basic intro

Define model: fix the hyperparameters for example 

The optimisation loop: here 5 steps
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