
Toni Šćulac
Faculty of Science, University of Split, Croatia

Corresponding Associate, CERN

tCSC Machine Learning 2024, Split, Croatia

INTRODUCTION TO
MACHINE LEARNING

METHODS

1) Introduction to Statistics
2) Statistics and Machine Learning
3) Classical Machine Learning
4) Introduction to Deep Learning
5) Advanced Deep Learning

LECTURES OUTLINE 2

INTRODUCTION TO DEEP
LEARNING

*inspiration and examples from 3B1B and S. Zhang

https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=w8yWXqWQYmU

NEURAL NETWORKS 4

๏ Originate from attempts to model neural processes
๏ The input is a real number, and the output of each

neuron is computed by some non-linear function of
the sum of its inputs.

๏ Neurons typically have a weight that adjusts as
learning proceeds. The weight increases or
decreases the strength of the signal at a connection.

๏ Neurons are aggregated into layers. Different layers
may perform different transformations on their
inputs.

๏ Can be viewed as a specific way of parametrising
transformation functions
๏ transformation functions are usually called activation

functions

Φ(x)

x1

x2

x3

Φ1(x1)

Φ2(x1)

Φ4(x3)

y1(x)

y2(x)

Φ′ 1(x′ 1)

Φ′ 1(x′ 2)

Φ′ 2(x′ 4)

x′ 1

x′ 2

x′ 3

x′ 4

BLACK BOX
Machine Learning
AI
BDT
Neural Networks

NEURAL NETWORKS 6

๏ Neural networks (NNs) are a ML model inspired by the structure and function
of biological neural networks in animal brains.

๏ Neurons (or nerve cells) are electrically
excitable cells able to fire electric signals
across a neural network

๏ Collects inputs from other
neurons using dendrites

๏ Gathers all the inputs, and fires an
electric signal if some conditions are met

๏ The fired signal is then sent to other
neurons through the axon

๏ Our brain is an extremely large
interconnected network of neurons that
processes huge amounts of data and
tries to model the World

(x1, ⋯, xN)

ARTIFICIAL NEURAL NETWORKS 7

๏ Why not copy nature? Let’s try to build the same thing, but in python (c++)…
๏ Keeping in mind our goal of approximating the LR
๏ Let’s start simple, by designing an artificial Neural Network with:

X1

X2

X3

OUTPUT

f(∑
i

wixi)
w1

w2

w3

๏ 3 input nodes:
๏ to keep it real simple in the beginning, let’s limit

ourselves to 0-1 input
๏ strength of input signal is modelled by weights

๏ 1 neuron:
๏ we will mimic electric signal of a neuron with an

activation function

๏ 1 output:
๏ just like in DT it can be 0(b) or 1(s)

PERCEPTRON 8

๏ Perceptron is a simple neuron with a simple activation function that aggregates
inputs and decides if neuron will fire an electrical signal (1) or not (0)

๏ Binary output:

X1

X2

X3

OUTPUT

f(∑
i

wixi)
w1

w2

w3

SIGMOID NEURON 9

๏ Sigmoid neuron uses a sigmoid function that provides a smoother output
๏ Small change in weights will result in a small change in output

๏ Sigmoid functions are a class of functions that resemble shape “S”
๏Let’s try to build our first NN with a logistic sigmoid function!

X1

X2

X3

OUTPUT

f(∑
i

wixi)
w1

w2

w3

f(∑
i

wixi) =
1

1 + e−∑i wixi

0

0.5

1

−6 −4 −2 0 2 4 6

BUILDING A NN FROM SCRATCH 10

๏ Let’s define a very simple training dataset and see if we can build a single-
layer single-neuron NN that can learn the model behind it:

x1 x2 x3 Y(x)
data 1 0 0 1 0
data 2 1 1 1 1
data 3 1 0 1 0
data 4 0 1 1 1

๏ Can your NN 🧠 figure out the model Y(X)? 🤔
๏ Alright, we have the dataset that we will feed to the network and we have

chosen our activation function. Let’s plug in some numbers and see if we can
figure out how to get our NN to learn from input data!

BUILDING A NN FROM SCRATCH 11

๏ We need to also choose some starting values for weights
๏ why not

๏ Plugging in numbers we get:
⃗w = (−0.2,0.4, − 1.0)

X1=0

X2=0

X3=1

OUTPUT = 0.269

w1 = − 0.2

w2 = 0.4

w3 = − 1.0

f(∑
i

wixi) =
1

1 + e− ⃗w ⋅ ⃗x

data 1
x1 x2 x3 Y(x) Ŷ(x)

data 1 0 0 1 0 0.269

data 2 1 1 1 1 0.310

data 3 1 0 1 0 0.231

data 4 0 1 1 1 0.354

๏ How would you use this information to train your NN?

BACKPROPAGATION 12

๏ I think we all agree on the steps of the basic NN learning algorithm:
1. Based on all input data and starting weights calculate the predicted output

2. Define some kind of a loss (cost) function that is a function of real output
values that are known from train data and predicted output

3. Determine how you can change the weights so that the loss function would
decrease in value

4. Update weights
5. Repeat steps 1-4 until loss (cost) function can’t be reduced anymore

๏ This procedure is called backpropagation because we are propagating information
in the opposite direction of the neural network

๏ [Fun fact] Biological neural backpropagation is proven to exist but its function
remains mysterious. 😲

̂y(⃗x, ⃗w)

L(y, ̂y)

LOSS FUNCTION 13

๏ Next step is to define a loss function that measures the error of our estimate
๏ Loss = measure of misclassification

๏ Many different possibilities, but let’s start with a very simple and intuitive one:

๏

๏ be careful, here index goes over training data (in our case)

๏ It is obvious that the training should finish when the loss function is at its
minimum

L(⃗x, ⃗w) =
1
2 ∑

i
(yi − ̂y(⃗xi, ⃗w i))2

i i = 1,2,3,4

x 0

x 1

x 2

x 3
x 4

*

*

๏ The idea is to take repeated steps in the opposite direction of the gradient of
the function at the current point, because this is the direction of steepest
descent.

GRADIENT DESCENT 14

๏ From definition of a gradient we can conclude:

๏

๏ where indicates the index of the iteration of training (epoch) and is a free parameter called
the learning rate

๏ This is where we realise that in order to apply gradient descent our activation
function has to be differentiable!

๏ In our case:

๏
;

๏

wj(t + 1) = wj(t) − η
∂L
∂wj

(t)

t η

L(⃗w) =
1
2 ∑

i
(yi − ̂y(⃗xi, ⃗w i))2 ̂y(⃗x, ⃗w) = σ(⃗x, ⃗w) =

1
1 + e− ⃗w ⋅ ⃗x

∂L
∂wj

= − ∑
i

[y − σ(⃗w ⋅ ⃗x)] ⋅ [σ(⃗w ⋅ ⃗x)(1 − σ(⃗w ⋅ ⃗x))]xj

GRADIENT DESCENT 15

๏

๏

๏ In our simple example, taking learning rate to be
 at the moment:

๏

๏
;

๏
๏

∂L
∂wj

= − ∑
i

[y − σ(⃗w ⋅ ⃗x)] ⋅ [σ(⃗w ⋅ ⃗x)(1 − σ(⃗w ⋅ ⃗x))]xj

wj(t + 1) = wj(t) − η
∂L
∂wj

(t)

η = 1.0

∂L
∂w1

(0) = (0110)

−0.053
0.148

−0.041
0148

= 0.106

w1(1) = w1(0) + η ⋅ 0.106 w1(1) = − 0.094
⃗w (0) = (−0.2,0.4, − 1.0) → ⃗w (1) = (−0.094,0.695, − 0.799)

L(⃗w (0)) = 0.51 → L(⃗w (1)) = 0.38

w

L(w)

w(0)w(1)

G
ra

di
en

t

BUILDING A NN FROM SCRATCH 16

๏ We just trained one epoch of a single-layer single-neuron by hand!
๏ It is a great achievement, but now it is time to hire python and speed things up

๏ We can decide if neuron output is >0.5 the prediction is 1, otherwise it is 0.
๏ Let’s see what happens after 100 epochs!

๏ Success!
๏ Or is it? How can we make sure the NN learned the correct model?

๏ What happened? How can we fix the problem?

INTRODUCING BIAS 17

๏ Having only 0 as input is tricky, because our NN gets stuck and it can never
move

๏ This motivates the introduction of a bias term as one input node to our neuron

๏ We want to guess initial bias and later update it in training

f(∑
i

wixi + b) =
1

1 + e−∑i wixi+b
X1

X2

X3

OUTPUT

f(∑
i

wixi + b)w1

w2

w3

B

GRADIENT DESCENT WITH BIAS 18

๏ First we need to update the loss function:

๏
;

๏

๏

๏

๏

๏ Time to go back and retrain our NN with bias!

L(⃗w , b) =
1
2 ∑

i
(yi − ̂y(⃗xi, ⃗w i, b))2 ̂y(⃗x, ⃗w , b) = σ(⃗x, ⃗w , b) =

1
1 + e− ⃗w ⋅ ⃗x+b

∂L
∂wj

= − ∑
i

[y − σ(⃗w ⋅ ⃗x + b)] ⋅ [σ(⃗w ⋅ ⃗x + b)(1 − σ(⃗w ⋅ ⃗x + b))]xj

∂L
∂b

= − ∑
i

[y − σ(⃗w ⋅ ⃗x + b)] ⋅ [σ(⃗w ⋅ ⃗x + b)(1 − σ(⃗w ⋅ ⃗x + b))]

wj(t + 1) = wj(t) − η
∂L
∂wj

(t)

b(t + 1) = b(t) − η
∂L
∂b

(t)

BUILDING A NN FROM SCRATCH 19

๏ Let’s define NN parameters:
๏ N_epoch = 100, , b(0)=-5, ⃗w (0) = (−0.2,0.4, − 1.0) η = 0.1

๏ Success!
๏ Or is it? How can we make sure the NN learned the correct model?
๏ No! We can’t just test it on 1 example and call it a day!
๏ We need to make a thorough study on more test data
๏ We need to see what is happening to the loss/cost function as well!

๏ In our case, we have 4 test data points that are not part of training:
๏ [0,0,0], [0,1,0], [1,0,0], [1,1,0]

TESTING A NN 20

[0,0,0]

[0,1,0]

TESTING A NN 21

[1,0,0]

[1,1,0]

SIMPLE NN OVERVIEW 22

๏ Building a simple NN from scratch helps us understand key concepts:
๏ Input nodes, layers, neurons, outputs
๏ Activation functions
๏ Backpropagation
๏ Loss/cost functions
๏ Gradient descent
๏ Bias input nodes, learning rate, epochs
๏ Training
๏ Testing

๏ We will continue by coming back to some of the above mentioned concepts
and discussing how they affect NN and different approaches

๏ This will give us a deep understanding to be able to move to deep learning

BLACK BOX
Machine Learning
AI
BDT
Neural Networks

ACTIVATION FUNCTIONS 23

๏ It determines at what threshold the neuron will fire or the frequency at which a
neuron fires

๏ If we want to apply Gradient descent it needs to be differentiable
๏ Some common choices that we didn’t mention:

*LU = Linear Unit (commonly used for for regression)

UNIVERSAL APPROXIMATION THEOREM 24

๏ Neural Networks are extremely powerful because of it

๏ Let be any continuous function. The finite sums of the form

 are dense in .

๏ In other words, given any and , there is a sum of the above form such
that

๏ The theorem states that for a given function, if there are enough neurons in a NN, then there
exists a neural network with that many neurons that does approximate function to within

๏ We solved the problem!
๏ No :(Theorem does not provide any way to actually find such a sequence.

๏ It also doesn’t guarantee any method, such as backpropagation, might actually find such a
sequence

σ

G(x) =
N

∑
i=1

αiσ(wT
i x + bi) , wi ∈ ℝN , αi, bi ∈ ℝ C(ℝ, ℝ)

ϵ > 0 f ∈ C(ℝ, ℝ) G(x)
|G(x) − f(x) | < ϵ, ∀x ∈ ℝm

f ϵ

GRADIENT DESCENT 25

๏ Another commonly used loss function is cross-entropy

๏ Choice of learning rate can determine if we get stuck in a local minima or
overshoot global minima
๏ Possible to update (reduce) learning rate as we approach minima

L(w, b) = − ∑
k

∑
i

yik log ̂yik

STOCHASTIC GRADIENT DESCENT 26

๏ So far we have updated weights averaged over all training cases and repeated
this for N epochs
๏ this is called batch gradient descent and results in smooth cost vs epoch graph
๏ Deep learning uses huge amounts of data so this approach can become extremely slow

๏ Idea of stochastic gradient descent is to update weights after each event
๏ Mini-batch gradient descent is a combination of 2 that is achieved by

splitting the training dataset into several smaller ones

DEEP NEURAL NETWORK 27

๏ Now that we have mastered a single-neuron single-layer NN it is time to move
to deep NNs

๏ “Deep” simply means a lot of hidden layers (and neurons) :)
๏ In math language we will move from simple functions that map a couple of real numbers to a

single number to extremely complicated functions that map very high-dimensional matrices to
some other matrices

X1

X2

X3

OUTPUT

f(∑
i

wixi + b)w1

w2

w3

B

ADDING HIDDEN LAYERS 28

๏ Let’s again start very simple by investigating addition of hidden layers:

X Ŷ

OUTPUT
LAYER

σ(w(1)x + b(1))

B(1)

w(1)
A(1) A(2)w(2)

B(2)

σ(w(2)a(1) + b(2))

w(3)

B(3)

σ(w(3)a(2) + b(3))

INPUT
LAYER

HIDDEN
LAYER 1

HIDDEN
LAYER 2

๏ Key element for backpropagation is to calculate the cost/loss function
๏ We again start simple with cost function of a single training event 0:

๏
๏

C0(w(1), b(1), w(2), b(2), w(3), b(3)) = (a(3) − y)2

a(3) = σ(z(L)) , z(3) = w(3)a(2) + b(3) , a(0) = x

HIDDEN LAYERS MATH 29

๏ We want to understand how a small change in affects ?
๏ Calculus tells us we can figure it out by applying the well known “chain rule”

๏

๏ , ,

๏ is the cost function of a single training event. To move to all N events we
simply average over all events:

๏

w(3) C0

∂C0

∂w(3)
=

∂C0

∂a(3)

∂a(3)

∂z(3)

∂z(3)

∂w(3)

∂C0

∂a(3)
= 2(a(L) − y)

∂a(3)

∂z(3)
= σ′ (z(3))

∂z(3)

∂w(3)
= a(2)

C0

∂C
∂w(3)

=
1
N

N−1

∑
k=0

∂Ck

∂w(3)

HIDDEN LAYERS MATH 30

๏ To apply gradient descent we need the gradient of the cost function:

๏

 , ,

๏ Knowing the gradient and defining the learning rates we can update our
weights and biases

๏ Final step is to allow multiple (many) neurons in each layer!

∇C =

∂C
∂w(1)

∂C
∂b(1)

⋮
∂C

∂w(L)

∂C
∂b(L)

∂C0

∂w(L)
= 2a(L−1)σ′ (z(L))(a(L) − y)

∂C0

∂b(L)
= 2σ′ (z(L))(a(L) − y)

DEEP NN = MATRIX MULTIPLICATION 31

๏ Turns out that equations for deep NN look very nice and simple if you use
matrix notation

๏ Let’s look at the example with 2 hidden layers:
๏ Forward propagation:

๏
๏
๏

Z1 = W1 ⋅ X + B1
Z2 = W2 ⋅ A1 + B2 , A1 = σ(Z1)
Z3 = W3 ⋅ A2 + B3 , A2 = σ(Z2)

DEEP NN = MATRIX MULTIPLICATION 32

๏ Turns out that equations for deep NN look very nice and simple if you use
matrix notation

๏ Let’s look at the example with 2 hidden layers:

๏ Backpropagation with :

๏ , ,

๏ , ,

๏ , ,

C = |A3 − Y |2

dZ3 = 2(A3 − Y) ∘ f′ (Z3)
∂C
∂W3

= dZ3 ⋅ AT
2

∂C
∂B3

= dZ3

dZ2 = (WT
3 ⋅ dZ3) ∘ f′ (Z2)

∂C
∂W2

= dZ2 ⋅ AT
1

∂C
∂B2

= dZ2

dZ1 = (WT
2 ⋅ dZ2) ∘ f′ (Z1)

∂C
∂W1

= dZ1 ⋅ XT ∂C
∂B1

= dZ1

* careful not to mix the dot product () and Hadamard product ()⋅ ∘

DEEP NN = MATRIX MULTIPLICATION 33

๏ Turns out that equations for deep NN look very nice and simple if you use
matrix notation

๏ Let’s look at the example with 2 hidden layers:
๏ Update weights and biases:

๏ ,

๏ ,

๏ ,

W1(t + 1) = W1(t) − η
∂C
∂W1

B1(t + 1) = B1(t) − η
∂C
∂B1

W2(t + 1) = W2(t) − η
∂C
∂W2

B2(t + 1) = B2(t) − η
∂C
∂B2

W3(t + 1) = W3(t) − η
∂C
∂W3

B3(t + 1) = B3(t) − η
∂C
∂B3

BUILDING DEEP NN FROM SCRATCH 34

๏ Did we really understand deep NNs if we don't code these matrix equations
ourselves?

๏ Let’s try building a NN that can recognise handwritten digits from the famous
MNIST data

๏ We will take 70k 28x28 pixel images
๏ For each pixel there is a value 0-255 indicating its value on grayscale

(0=black, 255= white)
๏ Each picture comes with a 0-9 label

BUILDING DEEP NN FROM SCRATCH 35

๏ We simply choose a NN with 28x28=784 input neurons
๏ We add 2 hidden layers with 16 neurons in each one
๏ Output layer has 10 neurons (idea is that each one carries information on how

likely the number corresponds to that digit)

… … …

…

728 16 16 10

0.01
0.12

0.02

5

BUILDING DEEP NN FROM SCRATCH 36

๏ Let’s define our matrices and their dimensions:

๏
 X =

x(0,1)
1 x(0,1)

2 ⋯ x(0,1)
60000

x(0,2)
1 x(0,2)

2 ⋯ x(0,2)
60000

⋮ ⋮ ⋮ ⋮
x(0,727)

1 x(0,727)
2 ⋯ x(0,727)

60000

W1 =

w(1)
0,0 w(1)

1,0 ⋯ w(1)
727,0

w(1)
0,1 w(1)

1,1 ⋯ w(1)
727,1

⋮ ⋮ ⋮ ⋮
w(1)

0,15 w(1)
1,15 ⋯ w727,15

… … …

…

BUILDING DEEP NN FROM SCRATCH 37

๏ We are ready to turn this math into python code!

BUILDING DEEP NN FROM SCRATCH 38

๏ We decide to split our dataset into 60k training points and 10k test points.
๏ Training it for 1500 epochs with 0.1 learning rate:

๏ Don’t forget to check for overtraining!

BUILDING DEEP NN FROM SCRATCH 39

๏ Not a bad performance for numpy only deep NN!
๏ [CHALLENGE] Can you beat me? Can you write a better

deep NN to solve the same problem using only NumPy?

CONCLUSIONS AND OUTLOOK 40

๏ Machine Learning is only a powerful tool in the hands of someone who
understands how it works

๏ It is impossible to fully understand every single detail of what happens inside
of a multilayered NN/BDT
๏ But that doesn’t mean you can’t fully understand the concept and mathematics behind it and be

able to apply it in a simplified version

๏ Everything we have discussed so far is considered Classical (old) Machine
Learning and is not even close in performance with State of the Art
๏ However, all the concepts that we have learned about are the key of modern ML

๏ In the reminder of the school you will learn about state of the art ML and its
application to HEP
๏ Whenever things seem to be too complicated to understand, just drop back to basics and try to

understand it in an overly simplified version like we did together

