Machine Learning Basics - Set 3a:
Implementing a Single Neuron with NumPy

Dataset: A, B from previous sets and C: a tricker dataset with two features and points belonging either to
class 0 or 1.

1. Understanding Gradient Descent:
a) Explain the concept of gradient descent in your own words.
b) Implement a simple cost function for a single neuron:

def cost_function(y_true, y_pred):
Your implementation here
Hint: Use mean squared error

¢) Derive the analytical formula for the gradient of the cost function with respect to the weights for a single
neuron, assuming a sigmoid activation function.

2. Implementing a Single Neuron:

a) Write a Python function to initialize weights for a single neuron:

def initialize_weights(input_dim):
Your implementation here
Hint: Use np.random.randn()

b) Implement the forward pass for a single neuron:

def forward_pass(X, weights, bias):
Your implementation here
Hint: Use np.dot() for matrix multiplication

¢) Implement a simple activation function (the sigmoid as seen during the lectures):

def sigmoid(x):
Your implementation here

3. Gradient Descent for a Single Neuron:

a) Implement a function to calculate the gradients:

def calculate_gradients(X, y, y_pred, weights):
Your implementation here
Hint: Use the formula derived in 1c

b) Write a function to update the weights:

def update_weights(weights, gradients, learning_rate):
Your implementation here

¢) Implement a simple training loop:

def train_neuron(X, y, learning rate, num_epochs):
Your implementation here
Use functions from 3a and 3b
Return trained weights and cost history

4. Training and Evaluation:

a) Train your single neuron on the provided dataset using the functions you’ve implemented.

b) Plot the cost versus the number of epochs to visualize the training progress. Use matplotlib or any other
plotting library.
¢) Evaluate the final predictions of your trained neuron on the training data:

def evaluate_neuron(X, y, trained_weights, trained_bias):
Your implementation here
Calculate and return accuracy

Note: Use NumPy (import numpy as np) for all numerical operations. Remember to handle potential nu-
merical instabilities, such as division by zero or log of zero.

