
tCSC on ML ‘24, Split, Croatia 16. October 2024

M. Schenk, V. Kain
CERN, Switzerland

Machine Learning in Accelerators
Introduction to Reinforcement Learning

Agent observes environment state

Introduction
RL in nature

state agent

… takes action

… collects reward

source

Environment transitions
to new state

new state

https://www.youtube.com/watch?v=spfpBrBjntg&ab_channel=MarcoBeckmann

Introduction

• Goal: find mapping 𝑓: 𝑥𝑖 ⟼ 𝑦𝑖
• Data: labelled samples (𝑥𝑖 , 𝑦𝑖)

RL in the machine learning landscape

source

https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle/

Introduction

• Goal: find mapping 𝑓: 𝑥𝑖 ⟼ 𝑦𝑖
• Data: labelled samples (𝑥𝑖 , 𝑦𝑖)

RL in the machine learning landscape

• Goal: find structure in data

• Data: unlabelled samples (𝑥𝑖)

source

https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle/

Introduction

• Goal: find mapping 𝑓: 𝑥𝑖 ⟼ 𝑦𝑖
• Data: labelled samples (𝑥𝑖 , 𝑦𝑖)

RL in the machine learning landscape

• Goal: learn to take optimal decisions in an
environment

• Data: agent takes actions within environment
collecting data samples & rewards

• Goal: find structure in data

• Data: unlabelled samples (𝑥𝑖)

source

https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle/

Introduction
RL: state-of-the-art

OpenAI, 2019: Hide and seek

DeepMind, 2016: AlphaGo

DeepMind, 2022: AlphaTensor
➢ Improving computational efficiency of

matrix multiplication
➢ RL agent discovered more efficient

algorithms than previously known

DeepMind & SPC-EPFL, 2022: Tokamak control
➢ Maintaining plasma within Tokamak
➢ Requires high-dimensional, high-frequency,

closed-loop control
➢ RL agent as magnetic controller

UZH & Intel Labs, 2023: Drone racing
➢ RL agent beats human drone racing

champions in real environment
➢ Training in simulations with mixed-in

residual models from real data

and more …

https://openai.com/blog/emergent-tool-use/
https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=GoogleDeepMind
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-023-06419-4

Introduction

• Iterative, online, trial-and-error learning
➢ At every time step 𝑡, agent observes environment state 𝑠𝑡,

selects an action 𝑎𝑡, and collects reward 𝑟𝑡+1
➢ Environment transitions from 𝑠𝑡 to 𝑠𝑡+1 under action 𝑎𝑡

• Objective
➢ Learn to act in a way that maximises cumulative reward

over time (= return)

➢ In other words: learn an optimal policy (= agent’s behaviour)

Sutton & Barto

RL in a nutshell

Environment: everything you interact with & its dynamics
maze structure, Pac-man, ghosts, food, game rules, etc.

Agent: player (you!)

State: where am I? Where are ghosts, snacks, cookies?

Actions: ↑, ←, ↓, →

Reward: food (+), ghosts, time (−)

Return: game score (food eaten, lives lost, time elapsed)

Policy: given current state, should I go ↑, ←, ↓, → ?

Example: Pac-man

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

• Objective: navigate around a gridworld maximising return
(= cumulative reward over time)

• Four discrete actions: ↑, ←, ↓, →

• Reward model

➢ Stepping into empty field costs -1, bumping into walls -5

➢ Stepping through fire costs -10

➢ Reaching destination gives +30

• Use RL to learn an optimal policy
“what’s the best action to pick from any of the fields (= state) ?”

(An) optimal policy

Introduction
RL: exercise preview

+30

-10

-1

-5

-5

Contents

• Introduction

• Formalism

• Algorithms

➢ Value-based methods

➢ Policy gradient method

➢ Actor-critic scheme

• Challenges

• Summary

Introduction
Lecture scope

†Disclaimer: will not be mathematically rigorous or complete

• Formalism†

➢ RL terminology

➢ Markov decision process

• Algorithms
➢ Value- and policy-based methods

foundation for understanding many other RL algorithms

➢ Q-learning and actor-critic scheme

➢ Discrete and continuous state-action spaces

• Challenges

RL is a broad and exciting topic! The goal is to give you an introductory perspective and
hopefully spark your interest in exploring it further ☺

Contents

• Introduction

• Formalism

• Algorithms

➢ Value-based methods

➢ Policy gradient method

➢ Actor-critic scheme

• Challenges

• Summary

Formalism
Overview

Markov Process /
Chain

Markov property

State space 𝒮

State transitions

𝑠1

𝑠2

𝑠3

𝑠4

𝒫13

𝒫33

𝒫34

𝒫24

𝒫12

𝒫21

𝒮 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}

Markov Reward
Process

Reward mechanism
𝑟𝑡+1 = 𝑅(𝑠𝑡 , 𝑠𝑡+1)

+

Markov Decision Process
(MDP)

Decision making
action space 𝒜, agent, policy
𝑟𝑡+1 = 𝑅(𝑠𝑡 , 𝑠𝑡+1, 𝑎𝑡)

+

Formalism

• Memoryless random process consisting of

➢ State space 𝒮
discrete or continuous

➢ State transition probabilities 𝒫𝑠𝑠′

• States possess the Markov property (= memorylessness)

➢ The future evolution of the Markov chain depends only on the information
contained in the present state 𝑠𝑡, but not on the history of past states 𝑠𝑡−1, 𝑠𝑡−2, …

➢ 𝑃 𝑠𝑡+1 𝑠𝑡) = 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑠𝑡−1, … , 𝑠0)

Markov Process

𝑠1

𝑠2

𝑠3

𝑠4

𝒫13

𝒫33

𝒫34

𝒫24

𝒫12

𝒫21

𝒮 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}

Atari Breakout

State given by single video frame is not Markov, but a sequence of frames is

E.g.: need to know what direction the ball is moving to forecast future progression of
the game and be able to take an optimal decision

Formalism
Examples of memoryless states

Chess

Arrangement of pieces on the board fully defines current state.

There may be many ways to arrive at that particular state, but this is irrelevant
for deciding the next move and the future progression of the game.

Flight trajectory of a cannonball

State given by its current position and velocity 𝑠𝑡 = (Ԧ𝑥𝑡, Ԧ𝑣𝑡) provides
enough information to predict the future (in an ideal world …)

N.B.: 𝑠𝑡 = Ԧ𝑥𝑡 or 𝑠𝑡 = (Ԧ𝑣𝑡) do not fulfil the Markov property

Formalism
Markov Process: example

image by D. Silver - Lecture on RL

• 𝒮 = {Class 1, Class 2, Class 3, Facebook, Pub, Pass, Sleep}
• N.B.: “Sleep” is also called a terminal state, because once in it we will never leave it

https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf

Formalism
Markov Reward Process

• A Markov Process that has in addition a

➢ Reward function 𝑟𝑡+1 = 𝑅(𝑠𝑡 , 𝑠𝑡+1)

➢ Discount factor 𝛾 ∈ [0, 1]

• Return

𝐺𝑡 = σ𝑘=0 𝛾
𝑘 𝑟𝑘+𝑡+1

sum of discounted future rewards

• The discount factor 𝜸 controls the relative
importance of immediate vs future rewards

➢ 𝛾 → 0: only care about immediate rewards
➢ 𝛾 → 1: care about long-term rewards

• Can be better to give up immediate rewards
to collect higher rewards in the long run …
Example: sacrificing a piece in chess to eventually
win the game

image by D. Silver - Lecture on RL

Class 1 → Class 2 → Class 3 → Pass → Sleep

𝐺0 = −2 + 0.51 ⋅ −2 + 0.52 ⋅ −2 + 0.53 ⋅ +10 = −2.25
𝛾 = 0.5

https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf

Formalism
Markov Decision Process (MDP)

• Extend Markov Reward Process by
adding decision making mechanism

➢ Action space 𝒜
discrete or continuous

➢ A decision maker (= agent) acts on the
environment following a policy 𝝅

➢ Stochastic state transitions are still allowed

• We define a trajectory 𝜏 as a sequence of
states, actions, and rewards over time

𝜏 = (s0, a0, r1, s1, a1, r2, … , rT, sT)

image by D. Silver - Lecture on RL MDPs form the foundation of RL

https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf

Formalism

• The policy 𝝅 encodes an agent’s decision making or behaviour

• Two formulations are common

➢ Stochastic policy: assigns probabilities to state-action pairs (𝑠, 𝑎)

𝜋: 𝒮 × 𝒜 → 0, 1

𝜋 𝑎 𝑠) = 𝑃 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠) with σ𝑎 𝜋 𝑎 𝑠) = 1

➢ Deterministic policy: outputs specific action 𝑎𝑡 for given state 𝑠𝑡

𝜋: 𝒮 → 𝒜

𝑎𝑡 = 𝜋 𝑠𝑡

• We will also distinguish between

➢ Behaviour policy 𝜋𝑏: policy guiding the agent’s actions during
exploration and data collection

➢ Target policy 𝜋𝑡: policy we aim for the agent to learn and
optimise towards

RL objective & policy

Example: random policy

𝜋 ↑ | 𝑠 = 0.25

𝜋 ↓ | 𝑠 = 0.25

𝜋 ← | 𝑠 = 0.25

𝜋 → | 𝑠 = 0.25

+30

-10

-1

-5

-5

Formalism

• RL objective

➢ Learn optimal behaviour in an environment: trained agent should select best sequence of
actions from any state

➢ Also known as the optimal policy 𝜋∗

➢ “Best sequence of actions” means “the one maximising return”

• RL is based on the reward hypothesis

“Any goal can be formalised as the outcome of maximising a scalar, cumulative reward”

Interesting thoughts by Sutton and Barto: http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

RL objective

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

Formalism

• Finite MDP: sets of possible states, actions, and rewards are finite

• Stochastic vs deterministic MDP

➢ Stochastic: outcomes of taking a specific action not deterministic, i.e. starting from state 𝑠𝑡 and
taking action 𝑎𝑡 might not always bring us to the same state 𝑠𝑡+1

➢ Deterministic: outcome of an action is fully predictable

• Episodic MDP

➢ Each episode ends in a terminal state (or is truncated)

➢ Return is the sum of discounted rewards from time 𝑡 till end of episode

➢ Episodes are independent of each other

• Continuous (= infinite horizon) MDP

➢ Runs indefinitely with no terminal states

➢ Discount factor 𝛾 < 1 is key to avoid infinite returns

• Partially vs fully observable MDPs

➢ Agent might not see the true, full environment state 𝑠𝑡 but only be able to make a partial observation

➢ Real-world environments are very often only partially observable

Classification of MDPs

Quick recap

• The goal of RL is to learn to make optimal decisions (take best actions) in an environment
based on some observables (state)

• The quality of a decision made is quantified by a scalar reward

• Through trial-and-error, the RL agent collects data samples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) from which it
learns optimal behaviour (optimal policy 𝜋∗)

• Formally, this is described by a Markov decision process (MDP)

• Example RL tasks: playing board or video games, humanoid robots learning to walk, control
systems (e.g. tuning accelerator parameters), ...

Sutton & Barto

+30

-10

-1

-5

-5

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

Contents

• Introduction

• Formalism

• Algorithms

➢ Value-based methods

➢ Policy gradient method

➢ Actor-critic scheme

• Challenges

• Summary

Algorithms
RL zoo

There are many ways to solve the RL problem and finding
an optimal policy in an environment

OpenAI – spinning up
Policy-based

methods

Actor-critic
methods Value-based

methods

see lecture on
advanced RL

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Algorithms

• Value-based methods

➢ Agent learns a value function that estimates
expected return

➢ Policy is indirectly obtained from value function

➢ E.g.: Deep Q-learning (DQN)

• Policy-based methods

➢ Agent directly optimises parameters of a policy
function

➢ E.g.: Proximal Policy Optimisation (PPO)

• Actor-critic scheme

➢ Combines value-based and policy-based
methods

• On- vs off-policy methods

• Model-free vs model-based algorithms

RL taxonomy

Contents

• Introduction

• Formalism

• Algorithms

➢ Value-based methods

➢ Policy gradient method

➢ Actor-critic scheme

• Challenges

• Summary

Value-based methods
Value functions

• Value functions estimate “how good it is” for the agent …

𝐺𝑡 = ෍

𝑘=0

𝛾𝑘 𝑟𝑘+𝑡+1

Return

𝑉𝜋: 𝒮 → ℝ

𝑉𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑠𝑡 = 𝑠]

State-value function

“… to be in state 𝑠 given that we
follow policy 𝜋?”

𝑄𝜋: 𝒮 × 𝒜 → ℝ

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

State-action value function
(= “Q-function”)

”… to take action 𝑎 in state 𝑠 given that we
follow policy 𝜋?”

• ”Goodness” is measured in terms of return expected following that policy

• The value functions associated with the (an) optimal policy 𝜋∗ are denoted 𝑉∗ and 𝑄∗, respectively

𝑉∗ 𝑠 = max
𝑎′

𝑄∗(𝑠, 𝑎′)

Value-based methods
Q-learning

The goal of Q-learning is to deduce the optimal policy by learning the optimal state-
action value function 𝑄∗(𝑠, 𝑎) first

➢ Once 𝑄∗(𝑠, 𝑎) is known, it is easy to read off the best policy (= greedy policy)

𝜋∗(𝑠) = arg max𝑎′ 𝑄∗ 𝑠, 𝑎′

i.e.: “in a given state, what is the best action to take to maximise return?”

➢ How to learn 𝑄∗(𝑠, 𝑎) ?

Q-learning

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

State-action value function
(= “Q-function”)

Value-based methods
Bellman optimality equation

𝑄∗ 𝑠, 𝑎 = 𝔼𝜋∗[𝐺𝑡]

=෍

𝑠′

𝒫𝑠𝑠′
𝑎 [𝑅 𝑠, 𝑠′, 𝑎 + 𝛾max

𝑎′
𝑄∗ 𝑠′, 𝑎′]

= 𝑟𝑡+1 + 𝛾max
𝑎′

𝑄∗(𝑠𝑡+1, 𝑎
′)

assuming deterministic
environment

𝐺𝑡 = ෍

𝑘=0

𝛾𝑘 𝑟𝑘+𝑡+1 = 𝑟𝑡+1 + 𝛾෍

𝑘=0

𝛾𝑘 𝑟𝑘+𝑡+2

𝐺𝑡+1

➢ Bellman splits the trajectory into an “immediate part”
and “whatever follows beyond”

➢ It allows us to apply the Temporal Difference (TD) rule

when learning an estimator ෠𝑄∗ of the optimal Q-function

= 𝔼𝜋∗ 𝑟𝑡+1 + 𝛾𝐺𝑡+1

𝑉∗ 𝑠′ = 𝔼𝜋∗ 𝐺𝑡+1

= 𝔼𝜋∗[𝑟𝑡+1 + 𝛾max
𝑎′

𝑄∗ 𝑠′, 𝑎′]

𝑉∗ 𝑠′ = max
𝑎′

𝑄∗(𝑠′, 𝑎′)

Bellman optimality equation

weighted sum over all
possible next states 𝑠′

under action 𝑎

𝑠′ = 𝑠𝑡+1

𝑠 = 𝑠𝑡
𝑎 = 𝑎𝑡

• At 𝒕 = 𝟎: initialise ෠𝑄∗ 𝑠, 𝑎 , e.g. random, or all zeros

• At every time step

➢ Let agent interact with environment to collect (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) following some behaviour policy 𝜋𝑏
Typically, “ε-greedy”: select greedy action with probability 1-ε, random otherwise

➢ Update ෠𝑄∗(𝑠, 𝑎) based on TD rule using collected agent-environment interactions

• With enough iterations ෠𝑄∗(𝑠, 𝑎) will converge to the true 𝑄∗(𝑠, 𝑎)

Value-based methods
Q-learning algorithm 𝑄∗(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡+1 + 𝛾max𝑎′ 𝑄

∗(𝑠𝑡+1, 𝑎
′)

Bellman optimality equation

TD error

෠𝑄∗ 𝑠𝑡 , 𝑎𝑡 ← ෠𝑄∗ 𝑠𝑡 , 𝑎𝑡 + 𝛼 [𝑟𝑡+1 + 𝛾max𝑎′ ෠𝑄∗(𝑠𝑡+1, 𝑎
′) − ෠𝑄∗(𝑠𝑡 , 𝑎𝑡)]

target (new best guess) old
prediction

learning
rate

Q-learning update rule

This is how the new piece of information comes in –
and is the reason why the new target is a “better guess”

Value-based methods
Q-learning remarks

• Q-learning is an iterative process

➢ Need a way to track and update Q-values for each state-action pair at every iteration

➢ For simple (small, discrete) state-action spaces, we can use a look-up table

• Q-learning uses bootstrapping

➢ Update of ෠𝑄∗ 𝑠, 𝑎 uses a target that is itself based on an estimate
“shooting at a moving target”: training can be unstable as target also updates frequently

➢ Typically solved using two separate Q-estimators:
“target Q” and “online Q” with periodic synchronisation

• Q-learning is an off-policy method

➢ How agent chooses its actions (= behaviour policy 𝜋𝑏) to collect samples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) does not
necessarily match the policy, or associated value function, we are trying to learn (= target policy 𝜋𝑡)

➢ Allows for experience replay (recycling previous samples), improving sample efficiency

➢ More on that later ☺ …

Q-learning update rule

෠𝑄∗ 𝑠𝑡, 𝑎𝑡 ← ෠𝑄∗ 𝑠𝑡, 𝑎𝑡 + 𝛼 [𝑟𝑡+1 + 𝛾max𝑎′ ෠𝑄∗(𝑠𝑡+1, 𝑎
′) − ෠𝑄∗(𝑠𝑡, 𝑎𝑡)]

target (new best guess) old
prediction

by DALL-E

Value-based methods
Q-table example

+30

-10

-1

-5

-5

෠𝑄∗ 𝑠𝑡 , 𝑎𝑡 ← ෠𝑄∗ 𝑠𝑡 , 𝑎𝑡 + 𝛼 [𝑟𝑡+1 + 𝛾max𝑎′ ෠𝑄∗(𝑠𝑡+1, 𝑎
′) − ෠𝑄∗(𝑠𝑡 , 𝑎𝑡)]

෠𝑄∗ → 𝑄∗

greedy
policy

෠𝑄∗ ≈ 𝑄∗

Value-based methods
Deep Q-learning (DQN)

• Q-function of continuous or very large 𝒮 can no
longer be represented by a look-up table

• Replace table by neural net: deep Q-learning (DQN)

➢ Universal function approximator and great
interpolator (e.g. for unseen states)

➢ Q-net is mapping from state to Q-values of all
possible actions

➢ Train network weights using Q-learning
update rule

• Developed by DeepMind in 2013 and applied to
playing Atari games – many at super-human level
(DQN paper)

• N.B.: only for discrete 𝒜 – need one output node
per action …

https://arxiv.org/abs/1312.5602

Value-based methods
Example: DeepMind’s RL for Atari games

source

Q-net architecture

𝑸(𝒔, 𝒂)
for discrete set

of joystick /
button actions

state 𝒔
sequence of
video frames

“feature extraction”
layers

https://www.nature.com/articles/nature14236

Value-based methods
Q-table vs DQN: pros, cons, limitations

• Many real-world problems require continuous 𝒮 and continuous 𝒜
⇒ typically use policy gradient or actor-critic methods

• Other function approximators: (quantum) Boltzmann machines, …

Q-table

Easy to understand and validate

Discrete 𝒮, 𝒜 spaces only
Relatively small 𝒮, 𝒜 spaces only

+

DQN

Large, continuous 𝒮 possible
No need to visit all states during training:
neural nets are great interpolators

Discrete and relatively small 𝒜
Training may be unstable and hard to
validate (incl. convergence)

+

+

-

-

-

-

Contents

• Introduction

• Formalism

• Algorithms

➢ Value-based methods

➢ Policy gradient method

➢ Actor-critic scheme

• Challenges

• Summary

Policy gradient methods

• Policy represented by parameterised function 𝜋𝜃 𝑎 𝑠)
𝜃: for example weights of a neural network

• Goal is to directly optimise 𝜃 s.t. 𝜋𝜃 maximises expected return over trajectories 𝜏

𝐽 𝜃 = 𝔼𝜏~𝜋𝜃 𝐺(𝜏)

➢ Perform gradient ascent for policy parameters 𝜃

𝜃 ← 𝜃 + 𝛼 ⋅ ∇𝜃 𝐽(𝜃)

➢ Gradient can be calculated using the policy gradient theorem

∇𝜃𝐽 𝜃 = 𝔼𝜏~𝜋𝜃[෍

𝑡=0

Ψ𝑡 ∇𝜃log 𝜋𝜃 𝑎𝑡 𝑠𝑡)]

• N.B.: policy gradient algorithms typically differ in what they use for Ψt

➢ It can e.g. be the return, a so-called advantage function, a baseline corrected return, etc.

➢ More on that in the advanced lecture

In a nutshell

Contents

• Introduction

• Formalism

• Algorithms

➢ Value-based methods

➢ Policy gradient method

➢ Actor-critic scheme

• Challenges

• Summary

Algorithms
Actor-critic scheme

Actor (policy net)

➢ Represents the target
policy 𝜋𝑡 to be learned

➢ For each (continuous)
state 𝑠, it proposes a
(continuous) action 𝑎

➢ Its parameters 𝜒 are
updated through the
policy gradient

Critic (Q-net)

➢ Learns Q-function and
evaluates quality of the
(𝑠, 𝑎) pair proposed by
actor net

➢ Parameters 𝜃 are updated
using TD rule (like in Q-
learning)

➢ Feeds back to the actor via
policy gradient

For given state 𝑠, how does the actor have to adjust its parameters
𝜒 to propose an action 𝑎 that results in larger 𝑄 𝑠, 𝑎 ?

• Introduce an actor (= policy) and a critic (= value function estimator) combining a value-based

with a policy-gradient approach

• Typically, actor and critic are represented by (fairly small) neural nets, trained simultaneously

• Can solve the continuous state and action problem

• Various algorithms exist (DDPG, TD3, SAC, …), e.g. handling exploration-exploitation differently,

improving convergence behaviour, …

Algorithms
On- vs off-policy methods

• A priori, training an RL agent employs two policies

➢ Behaviour policy 𝜋𝑏: policy the agent follows to select action at every time step during data collection

➢ Target policy 𝜋𝑡: policy we aim for the agent to learn and optimise towards

• RL algorithms can be …

➢ 𝜋𝑡 ≠ 𝜋𝑏

➢ Agent updates and learns a different policy
(or value function) than it uses to interact
with the environment

➢ Example: Q-learning

Off-policy

𝑄 𝑠𝑡, 𝑎𝑡 ← 𝑄 𝑠𝑡, 𝑎𝑡 +
𝛼 [𝑟𝑡+1 + 𝛾max𝑎′ 𝑄(𝑠𝑡+1, 𝑎

′) − 𝑄(𝑠𝑡, 𝑎𝑡)]

TD target always based on current best guess of greedy action,
independent of action selected and applied in the environment by 𝜋𝑏

Learning Q-function associated with a greedy policy 𝜋𝑡

➢ 𝜋𝑡 = 𝜋𝑏

➢ Agent updates and learns the same policy
(or value function) that it uses to interact
with the environment

➢ Example: SARSA

On-policy

𝑄 𝑠𝑡, 𝑎𝑡 ← 𝑄 𝑠𝑡, 𝑎𝑡 +
𝛼 [𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)]

TD target based on action 𝑎𝑡+1 that was selected by 𝜋𝑏
and applied in the environment

Learning Q-function associated with 𝜋𝑏

Algorithms
Experience replay

• Off-policy algorithms boast improved sample efficiency

➢ They can learn from agent-environment interactions collected according to any policy

➢ Experience replay

▪ Keep buffer of past interactions and update value function on a batch of memories at every
training step

▪ Different sampling methods exist to select and learn from past experiences most efficiently

• On-policy algorithms can only learn “online”

➢ Learning step relies on samples collected according to currently valid policy

➢ We have to discard past experiences as they were collected according to a different policy

• On-policy methods typically feature more stable training than off-policy algorithms

Contents

• Introduction

• Formalism

• Algorithms

➢ Value-based methods

➢ Policy gradient method

➢ Actor-critic scheme

• Challenges

• Summary

Challenges
Non-exhaustive list

• Sample efficiency

➢ How many agent-environment interactions are required for training / convergence?

➢ Online training is not always possible: sim2real & sim2real gap

• Reward engineering

➢ Alignment: getting the objective right
Making sure the agent does what we want it to do …

➢ Credit assignment problem
Which action contributed how to the reward?

• Exploitation vs exploration dilemma

• State definition

➢ Markov property

➢ Environments are sometimes only partially observable

• Non-stationarity

• Safety & validation

➢ Particularly a concern during exploration

➢ There are ways to add safety to RL agents https://arxiv.org/abs/2205.10330

https://arxiv.org/abs/2205.10330

Challenges
Non-exhaustive list

• Sample efficiency

➢ How many agent-environment interactions are required for training / convergence?

➢ Online training is not always possible: sim2real & sim2real gap

• Reward engineering

➢ Alignment: getting the objective right
Making sure the agent does what we want it to do …

➢ Credit assignment problem
Which action contributed how to the reward?

• Exploitation vs exploration dilemma

• State definition

➢ Markov property

➢ Environments are sometimes only partially observable

• Non-stationarity

• Safety & validation

➢ Particularly a concern during exploration

➢ There are ways to add safety to RL agents https://arxiv.org/abs/2205.10330

https://arxiv.org/abs/2205.10330

• How many agent-environment interactions are required for the value function / policy to converge?

• Depends heavily on choice of algorithm

➢ Off- vs on-policy algorithms

➢ Online vs. offline RL

➢ Model-free vs model-based RL

• Reliable simulations / surrogate models

➢ Train RL agent on model, then deploy
in real world (sim2real)

➢ Model can be based on simulations,
measurements, or both

➢ sim2real gap can be a problem

Challenges
Sample efficiency

source

https://www.cs.toronto.edu/~tingwuwang/mbrl.html

Challenges

• To learn the best policy in an efficient manner,
algorithms need to have a good a balance between

➢ exploration: trying out different actions to
discover their effects and rewards

➢ exploitation: picking best-known action to
maximise return

• Why?

➢ During training, best-known action is typically
not yet the true best action

➢ Keep some degree of exploration to potentially
discover more rewarding actions and avoid
settling for suboptimal policy

➢ Too much exploration can slow down training
progress

• Different algorithms use different techniques to
balance out exploration and exploitation, e.g.
ε-greedy with decay, entropy-based methods, …

Exploration-exploitation dilemma

image by Berkeley AI course

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/lecture/lec15_6up.pdf

Summary

• Reinforcement learning (RL) solves decision-making problems and optimises an
agent for best behaviour (= optimal policy) in an environment, i.e. maximising expected return

• Formally, RL is based on Markov Decision Processes and the reward hypothesis

• RL algorithms employ different techniques

➢ Value-based methods: learn a value function that estimates expected return to deduce policy indirectly

➢ Policy-based methods: optimise parameters of a policy directly for highest expected return

➢ Actor-critic: combine learning policy and value functions

Functions to be learned are typically approximated by means of neural nets

• Some algorithms are suitable only for discrete state-action spaces

• We distinguish between on- and off-policy algorithms: behaviour vs target policy

• RL also faces many challenges

➢ Balancing exploration vs exploitation, sample efficiency, dealing with partially observable systems, etc.

➢ Some will be addressed in the advanced RL lecture

Further reading

• R.S. Sutton and A.G. Barto, "Reinforcement learning - an introduction", Book, 2nd edition, 2020.

• S. Levine, Deep Reinforcement Learning, Lecture, UC Berkeley, 2022.

• D. Silver, Reinforcement learning, Lecture, University College London (UCL), 2015.

http://incompleteideas.net/book/RLbook2020.pdf
https://rail.eecs.berkeley.edu/deeprlcourse/
https://www.davidsilver.uk/teaching/

