
tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Advanced concepts for
Reinforcement Learning

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Recap

State-action value function:

: total reward from taking in

The value function:

: total reward from

The advantage function: (advantage over taking a certain action over the average action)

Qπ(st, at) =
T

∑
t′￼=t

Eπθ [r(st′￼
, at′￼

) |st, at] at st

Vπ(st) =
T

∑
t′￼=t

Eπθ [r(st′￼
, at′￼

) |st] st

Vπ(st) = Eat∼π(at|st) [Qπ(st, at)]

Aπ(st, at) = Qπ(st, at) − Vπ(st)

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Sample efficiency
How many interactions does RL algorithm need until it has learned optimal policy/
-function/…?

Machine time is expensive. Some algorithms are excluded to train online!!

 off-policy algorithms: -learning, actor-critic methods, model-based RL…

Q

→ Q

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Continuous action space for accelerators
Sample-efficiency + continuous action space?

Basic -learning algorithm

Issue for continuous action: in update rule and ;
maximisation might not be straight forward for non-trivial

Q

max
a

Q(s, a) π(s) = arg max
a

Q(s, a)
Q

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

-learning with NAFQ
Various ways to overcome maximisation issue for continuous action space.

Most successful: actor-critic (e.g. DDPG)

For convex problems, can use a trick:

๏ -function assumed to belong to function class that is easy to optimise

✴ E.g. as a quadratic function of

๏ E.g. NAF (Normalised Advantage Function) algorithm

✴

✴

✴

Q

Q
a

Qϕ(s, a) = −
1
2

(a − μϕ(s))TPϕ(s)(a − μϕ(s)) + Vϕ(s)

→ arg max
a

Qϕ(s, a) = μϕ(s)

→ max
a

Qϕ(s, a) = Vϕ(s)

Gu, Lillicrap, Sutskever, Levine, PMLR, 2016

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

RL “datasets" problems environments→ →
API standard for reinforcement learning

OpenAI Gym Gymnasium (Farama Foundation)

Most important methods and attributes:

→

Updates an environment with actions, returning the next state/observation, the reward,…

Resets the environment to an initial state. Is called at the beginning of episode,
 returns first state/observation.

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Our MNIST-like problem for RL@ CERN: steering AWAKE - linee−

The Advanced Proton Driven Plasma Wakefield Acceleration (AWAKE) Experiment
investigates the use of plasma wakefields driven by a proton bunch to accelerate .

Trajectory steering environment - fully observable: 10 beam position monitors (BPMs) for
, 10 dipole correction actors for

e−

s a

Courtesy A. Scheinker

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

First RL test at CERN…
Learn how to steer AWAKE beam in horizontal plane.

-learning with very sample-efficient NAF algorithm

e−

Q

After some training the agent corrects any initial
steering to below target RMS within 1 or 2

iterations

Data from 2019 online training at 10 Hz: PhysRevAccelBeams.23.1248

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Reliable Reinforcement Learning Implementations

For deep RL, recommend to use Stable Baselines3 (SB3).

Solid implementations and lots of examples.

๏ New: first implementations towards SBX SB in Jax

Many state-of-the-art algorithms.

๏ DDPG, PPO, SAC, DQN, TD3,…

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Zoo of algorithms…

From OpenAI spinning up

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Recap
Reinforcement learning goal:

Find optimal policy that gives optimal trajectory

meaning finding by optimising the objective

 …trajectory samples

πθ pθ

pθ(s1, a1, …, sT, aT)

pθ(τ)

= p(s1)ΠT
t=1πθ(at |st)p(st+1 |at, st)

θ * J(θ)

θ* = arg max
θ

𝔼τ∼pθ(τ) [∑
t

r(st, at)]
J(θ)

J(θ) ≈
1
N ∑

i
∑

t

r(si,t, ai,t) i

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Policy update: θ ← θ + α∇θJ(θ)

J(θ) = 𝔼τ∼pθ(τ)[r(τ)] = ∫ pθ(τ)r(τ)dτ

∇θJ = ∫ ∇θ pθ(τ)r(τ)dτ = ∫ pθ(τ)∇θlog pθ(τ)r(τ)dτ = 𝔼τ∼pθ(τ)[∇θlog pθ(τ)r(τ)]

g = ∇θJ = 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ(at |st)) (
T

∑
t=1

r(st, at))]

pθ(τ)∇θlog pθ(τ) = pθ(τ)
∇θ pθ(τ)

pθ(τ)
= ∇θ pθ(τ)

pθ(s1, a1, …, sT, aT)

pθ(τ)

= p(s1)ΠT
t=1πθ(at |st)p(st+1 |at, st)

log pθ(τ) = log p(s1) +
T

∑
t=1

log πθ(at |st) + log p(st+1 |at, st)

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

General form of policy gradient

 and may be one of

the following:

This is the main theoretical foundation behind policy gradient algorithms.

Vanilla policy gradient algorithms have the issue of high variance for gradient estimation
because of term introducing a bias reduces variance.

g = ∇θJ = 𝔼τ∼pθ(τ) (
T

∑
t=1

∇θlog πθ(at |st)) (
T

∑
t=1

r(st, at))
Ψt

Ψt

∑
t

rt = Rτ →

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Why does bias reduce variance?

The expectation is unbiased (otherwise introducing bias would not be an option)…

Assume independence…

…a least square problem for …want

Var(X) := 𝔼[X2] − (𝔼[X])2

Var (
T−1

∑
t=0

∇θlog πθ(at |st)(Rt(τ) − b(st))) ≈
T−1

∑
t=0

𝔼τ [(∇θlog πθ(at |st)(Rt(τ) − b(st)))2]

≈
T−1

∑
t=0

𝔼τ [(∇θlog πθ(at |st))2] 𝔼τ [(Rt(τ) − b(st))2]

𝔼τ [(Rt(τ) − b(st))2] b(st) ≈ 𝔼[Rt(τ)]

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

REINFORCE algorithm

Algorithm

1. Initialise the policy parameters at random

2. Generate one trajectory with policy :

3. for :

1. Estimate the return

2. Update policy parameters:

Commonly used variation: subtract baseline value from to reduce variance of gradient
estimation.

With use baseline corrected:

θ
πθ s0, a0, s1, r1, a1, …, sT

t = 1,2,…, T
Rt

θ ← θ + αγtRt ∇θln πθ(at |st)

Rt

Qπ(st, at) = 𝔼π[Rt |st, at] A(s, a) = Q(s, a) − V(s)

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Proximal Policy Optimisation (PPO) (J. Schulman et al., 2017)

To improve training stability, avoid parameter updates that change policy too much at
one step!

Evolution of Trust Region Policy Optimisation (TRPO): ,
arXiv:1502.05477

Idea: introduce ratio and clipped objective function for automatic
differentiation

 … a lower bound
of the .

Shared weights between policy and value functions, is an entropy term to guide
exploration:

LTRPO(θ) = 𝔼[r(θ) ̂Aθold
(s, a)]

r(θ) =
πθ(a |s)

πθold
(a |s)

LCLIP(θ) = 𝔼[min(r(θ) ̂Aθold
(s, a), clip(r(θ),1 − ϵ,1 + ϵ) ̂Aθold

(s, a))]
LTRPO

S

L(θ) = 𝔼t[LCLIP
t − c1LV

t (θ) + c2S[πθ](st)]

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

PPO - Pseudocode

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Actor-Critic
….from the perspective of policy gradient.

Policy gradient methods have two ingredients: a policy model and the value function.

Knowing the value function can reduce variance during policy gradient updates.

 learn the value function as well.

Critic updates the value function parameters: or

Actor updates policy parameters in direction suggested by critic:

πθ

→

Qw(a |s) Vw(s)
πθ

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Vanilla Actor-Critic
Algorithm:

1. Initialise at random; sample

2. For :

1. Sample reward and

2. Then sample the next action

3. Update policy parameters:

4. Compute correction for critic (TD error):

5. Update the weights of critic (check this line):

6. Update and

This algorithm is “on-policy”: training samples are collected according to the target
policy (= the one we are optimising at the same time)

s, θ, w a ∼ πθ(a |s)
t = 1…T

rt ∼ R(s, a) s′￼ ∼ P(s′￼|s, a)
a′￼ ∼ πθ(a′￼|s′￼)

θ ← θ + αθQw(s, a)∇θln πθ(a |s)
δt = rt + γQw(s′￼, a′￼) − Qw(s, a)

w ← w + αwδt ∇wQw(s, a)
a ← a′￼ s ← s′￼

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

DDPG (Lillicrap et al, 2015)

Deep Deterministic Policy Gradient: model-free, off-policy, actor-critic

Q-function stabilised by experience replay and a slowly updating target networks

Deterministic policy ; for exploration add noise :

“soft updates” conservative policy iteration: : (…weights of
target networks)

μ(s) 𝒩 μ′￼(s) = μθ(s) + 𝒩
→ τ ≪ 1 θ′￼ ← τθ + (1 − τ)θ′￼ θ′￼

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

DDPG pseudocode

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

TD3 (S. Fujimoto et al, 2018)
Q-learning is known for overestimation of the value function Double Q-learning etc.

 Twin Delayed Deep Deterministic (=TD3) = DDPG plus tricks

๏ 2 Q networks, : clipped double Q learning + target policy smoothing (with):

 … clipped random noise

๏ Delayed updates of target and policy networks

→
→

Q1, Q2 ϵ

y = r + y min
i=1,2

Qθ′￼i
(s′￼, πϕ′￼

(s′￼) + ϵ) ϵ ∼ clip(𝒩(0,σ), − c, c)

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

TD3 pseudocode

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Comparison of algorithms - AWAKE steering

Policy-gradient algorithm PPO versus NAF
for AWAKE steering problem in simulation:

TD3 versus NAF for AWAKE steering
problem in simulation: similar performance

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Model-based RL

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Model-based RL
What if we knew the transition model ?

๏ Often we do know the dynamics Monte Carlo Search Trees, LQR,…
✴ Games (chess,..)

✴ Easily modelled systems (e.g. navigating a car)

✴ Simulated environments (AWAKE steering environment,…)

๏ Often we learn the dynamics will focus on this!
✴ System identification - fit unknown parameters of a known model

✴ Learning - fit a general-purpose model to observed transition data

Does this make things easier? Often, yes!

f(st, at) = st+1

→

→

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Let’s learn the model…
Learn from data and then plan through it

Algorithm:

1. run base policy (e.g. random policy) to collect

2. learn dynamics to minimise

3. plan through to choose actions

…works particularly well if can go physics-based and just fit a few parameters of model.

Potential issue distribution mismatch, model bias from data collection process.

f(st, at)

π0(at |st) 𝒟 = {(s, a, s′￼)i}
f(s, a) ∑

i

∥f(si, ai) − s′￼i∥2

f(s, a)

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Improved algorithm 0.1

Collect data according to representative policy…

1. run base policy (e.g. random policy) to collect

2. learn dynamics to minimise

3. plan through to choose actions

4. execute those actions add the resulting data to

π0(at |st) 𝒟 = {(s, a, s′￼)i}
f(s, a) ∑

i

∥f(si, ai) − s′￼i∥2

f(s, a)
{(s, a, s′￼)j} 𝒟

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Improved algorithm 1.0
How to deal with model errors… long-term accumulation of errors during planning

We “replan”!
1. run base policy (e.g. random policy) to collect

2. learn dynamics to minimise

3. plan through to choose actions

4. execute the first planned action, observe resulting state (MPC)

5. append to

π0(at |st) 𝒟 = {(s, a, s′￼)i}
f(s, a) ∑

i

∥f(si, ai) − s′￼i∥2

f(s, a)
s′￼

{(s, a, s′￼)j} 𝒟

Ev
er

y
N

 s
te

ps

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Example: AWAKE steering
Number of training steps N = 1, i.e. learn dynamics only once. MPC algorithm: iLQR

Dynamics model trained on 200 datapoints collected with random policy.

N. Bruchon et al., 2020

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Improved algorithm 1.1
How to deal with model errors… long-term accumulation of errors during planning

We “replan”! And use uncertainty-aware models
1. run base policy (e.g. random policy) to collect

2. learn dynamics to minimise with uncertainty

3. plan through to choose actions, take action with high reward in expectation
4. execute the first planned action, observe resulting state (MPC)

5. append to

π0(at |st) 𝒟 = {(s, a, s′￼)i}
f(s, a) ∑

i

∥f(si, ai) − s′￼i∥2

f(s, a)
s′￼

{(s, a, s′￼)j} 𝒟

Ev
er

y
N

 s
te

ps

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

An example: GP-MPC
 GP-MPC…very sample-efficient, shallow model-based RL

๏ Learn dynamics as GP, optimise for cumulative reward in virtual rollouts

The idea in more detail:

๏ Learn transition model: where is GP

๏ Define cumulative reward over horizon in virtual rollouts

๏ Find sequence of actions , making use by defining an acquisition
function and derivatives wrt

๏ optimise at each iteration; allows to treat time-varying systems, constraints

๏ See also: arXiv:1706.06491

→

st+1, rt = f(st, at) f

J =
h

∑
k=1

rk h

a1:h = arg max J
a1:h

→

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Example: Combine BO with MPC - GP-MPC
Tested idea on 50 Hz control for the SPS slow extracted spill in simulation

Objective: correct norm. amplitude of 50 Hz component such that
,

Aspill Aspill < 0.15
⃗s = [Aspill, ϕspill, Acorr, ϕcorr] ⃗a = [ΔAcorr, Δϕcorr]

r = − A2
noise + A2

corr + 2AnoiseAcorr cos Δϕ

Episodic training of 50 Hz spill control

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Towards algorithm 2.0
Use “model-free” RL algorithms together with the dynamics model to generate synthetic
samples

 "model-based acceleration” for model-free RL

To avoid issue with error accumulation along long horizons, go off-policy and short
rollouts.

→

run with true dynamicsπ0
run with learned dynamicsπ0

Error accumulation as function of time

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Algorithm 2.0 Dyna-Style Algorithms→
Model-based RL with short rollouts

See: Algorithm Dyna by R. S. Sutton: Integrated architectures for learning, planning and
reacting based on approximating dynamic programming. (1990)

1. run base policy (e.g. random policy) to collect

2. learn dynamics to minimise

3. pick states from use to make short rollouts from them

4. use both real and model data to improve with off-policy RL

5. run , append the visited to

π0(at |st) 𝒟 = {(s, a, s′￼)i}
f(s, a) ∑

i

∥f(si, ai) − s′￼i∥2

si 𝒟 f(s, a)
πo(a |s)

π0(at |st) {(s, a, s′￼)j} 𝒟

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

General “Dyna-style” model-based RL recipe

1. collet some data, consisting of transitions

2. learn model (and optionally,

3. repeat times:

1. sample from buffer

2. choose action (from , from , or random)

3. simulate (and)

4. train on with model-free RL

5. (optional) take more model-based steps

(s, a, s′￼, r)
̂p(s′￼|s, a) ̂r(s, a))

K
s ∼ ℬ

a ℬ π
s′￼ ∼ ̂p(s′￼|s, a) r = ̂r(s, a)

(s, a, s′￼, r)
N

 only requires short (as few as one step) rollouts from model→

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Our DYNA code (2020)
Use model-free RL agent as provided by stable-baselines3

Simple MLP for dynamics and reward models: wrapped in “surrogate environment”

Example: AWAKE H steering

50 initial data points for model

3 tests: 3rd test score 10/10

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

References
Reinforcement Learning - An Introduction (second edition), R. S. Sutton and Andrew G.
Barto, 2018

Deep Reinforcement Learning - CS285 Berkeley University, Sergey Levine, https://
rail.eecs.berkeley.edu/deeprlcourse/

Trust Region Policy Optimization, J. Schulman et al, arXiv:502.05477

Proximal Policy Optimization Algorithms, J. Schulman et al, arXiv:1707.06347

Addressing Function Approximation Error in Actor-Critic Methods, S. Fujimoto et al,
arXiv:1802.09477

https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/
https://rail.eecs.berkeley.edu/deeprlcourse/

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

EXTRA

tCSC on ML 2024, Split, V. Kain, 13-19 Oct 2024

Towards state-of-the-art Policy Gradient
Use idea of introducing bias:

with

Importance sampling…e.g. if collecting data with different policy than target policy.

g = ∇θJ = 𝔼τ∼pθ(τ) (
T

∑
t=1

∇θlog πθ(at |st)) (
T

∑
t=1

r(st, at))
Ψt

≈ 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ(at |st))] Q̄π(st, at)

Aπ(st, at) = Qπ(st, at) − Vπ(st) ≈ 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ(at |st))] Āπ(st, at)

𝔼x∼p(x)[f(x)] = ∫ p(x)f(x)dx = ∫
q(x)
q(x)

p(x)f(x)dx = ∫ q(x)
p(x)
q(x)

f(x)dx = 𝔼x∼q(x) [p(x)
q(x)

f(x)]

