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Advanced concepts for 
Reinforcement Learning
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Recap

State-action value function:

: total reward from taking  in 

The value function:

: total reward from  

The advantage function: (advantage over taking a certain action over the average action)

Qπ(st, at) =
T

∑
t′ =t

Eπθ [r(st′ 
, at′ 

) |st, at] at st

Vπ(st) =
T

∑
t′ =t

Eπθ [r(st′ 
, at′ 

) |st] st

Vπ(st) = Eat∼π(at|st) [Qπ(st, at)]

Aπ(st, at) = Qπ(st, at) − Vπ(st)
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Sample efficiency
How many interactions does RL algorithm need until it has learned optimal policy/
-function/…? 

Machine time is expensive. Some algorithms are excluded to train online!! 

 off-policy algorithms: -learning, actor-critic methods, model-based RL…

Q

→ Q
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Continuous action space for accelerators
Sample-efficiency + continuous action space?  

Basic -learning algorithm 

Issue for continuous action:  in update rule and ; 
maximisation might not be straight forward for non-trivial  

Q

max
a

Q(s, a) π(s) = arg max
a

Q(s, a)
Q
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-learning with NAFQ
Various ways to overcome  maximisation issue for continuous action space. 

Most successful: actor-critic (e.g. DDPG) 

For convex problems, can use a trick:  

๏ -function assumed to belong to function class that is easy to optimise 

✴ E.g. as a quadratic function of   

๏ E.g. NAF (Normalised Advantage Function) algorithm 

✴   

✴   

✴

Q

Q
a

Qϕ(s, a) = −
1
2

(a − μϕ(s))TPϕ(s)(a − μϕ(s)) + Vϕ(s)

→ arg max
a

Qϕ(s, a) = μϕ(s)

→ max
a

Qϕ(s, a) = Vϕ(s)

Gu, Lillicrap, Sutskever, Levine, PMLR, 2016
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RL “datasets"  problems  environments→ →
API standard for reinforcement learning 

OpenAI Gym  Gymnasium (Farama Foundation) 

Most important methods and attributes: 

→

Updates an environment with actions, returning the next state/observation, the reward,…

Resets the environment to an initial state. Is called at the beginning of episode, 
 returns first state/observation.
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Our MNIST-like problem for RL@ CERN:  steering AWAKE  - linee−

The Advanced Proton Driven Plasma Wakefield Acceleration (AWAKE) Experiment 
investigates the use of plasma wakefields driven by a proton bunch to accelerate .  

Trajectory steering environment - fully observable: 10 beam position monitors (BPMs) for 
, 10 dipole correction actors for 

e−

s a

Courtesy A. Scheinker
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First RL test at CERN…
Learn how to steer AWAKE  beam in horizontal plane.  

-learning with very sample-efficient NAF algorithm

e−

Q

After some training the agent corrects any initial 
steering to below target RMS  within 1 or 2 

iterations

Data from 2019 online training at 10 Hz: PhysRevAccelBeams.23.1248
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Reliable Reinforcement Learning Implementations

For deep RL, recommend to use Stable Baselines3 (SB3). 

Solid implementations and lots of examples. 

๏ New: first implementations towards SBX SB in Jax 

Many state-of-the-art algorithms. 

๏ DDPG, PPO, SAC, DQN, TD3,…  
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Zoo of algorithms…

From OpenAI spinning up
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Recap
Reinforcement learning goal: 

Find optimal policy  that gives optimal trajectory   

                  

meaning finding by  optimising the objective   

                          

   

                …trajectory samples  

πθ pθ

pθ(s1, a1, …, sT, aT)

pθ(τ)

= p(s1)ΠT
t=1πθ(at |st)p(st+1 |at, st)

θ * J(θ)

θ* = arg max
θ

𝔼τ∼pθ(τ) [∑
t

r(st, at)]
J(θ)

J(θ) ≈
1
N ∑

i
∑

t

r(si,t, ai,t) i
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Policy update: θ ← θ + α∇θJ(θ)
             

                  

           

          

         

        

J(θ) = 𝔼τ∼pθ(τ)[r(τ)] = ∫ pθ(τ)r(τ)dτ

∇θJ = ∫ ∇θ pθ(τ)r(τ)dτ = ∫ pθ(τ)∇θlog pθ(τ)r(τ)dτ = 𝔼τ∼pθ(τ)[∇θlog pθ(τ)r(τ)]

g = ∇θJ = 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ(at |st)) (
T

∑
t=1

r(st, at))]
  

 

pθ(τ)∇θlog pθ(τ) = pθ(τ)
∇θ pθ(τ)

pθ(τ)
= ∇θ pθ(τ)

pθ(s1, a1, …, sT, aT)

pθ(τ)

= p(s1)ΠT
t=1πθ(at |st)p(st+1 |at, st)

log pθ(τ) = log p(s1) +
T

∑
t=1

log πθ(at |st) + log p(st+1 |at, st)
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General form of policy gradient

          and  may be one of 

the following: 

This is the main theoretical foundation behind policy gradient algorithms.  

Vanilla policy gradient algorithms have the issue of high variance for gradient estimation 
because of  term  introducing a bias reduces variance.  

g = ∇θJ = 𝔼τ∼pθ(τ) (
T

∑
t=1

∇θlog πθ(at |st)) (
T

∑
t=1

r(st, at))
Ψt

Ψt

∑
t

rt = Rτ →
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Why does bias reduce variance?
 

The expectation is unbiased (otherwise introducing bias would not be an option)… 

 

Assume independence…  

                                                               

…a least square problem for …want 

Var(X) := 𝔼[X2] − (𝔼[X])2

Var (
T−1

∑
t=0

∇θlog πθ(at |st)(Rt(τ) − b(st))) ≈
T−1

∑
t=0

𝔼τ [(∇θlog πθ(at |st)(Rt(τ) − b(st)))2]

≈
T−1

∑
t=0

𝔼τ [(∇θlog πθ(at |st))2] 𝔼τ [(Rt(τ) − b(st))2]

𝔼τ [(Rt(τ) − b(st))2] b(st) ≈ 𝔼[Rt(τ)]
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REINFORCE algorithm

Algorithm 

1. Initialise the policy parameters  at random 

2. Generate one trajectory with policy :  

3. for : 

1. Estimate the return  

2. Update policy parameters:  

Commonly used variation: subtract baseline value from  to reduce variance of gradient 
estimation. 

With  use baseline corrected: 

θ
πθ s0, a0, s1, r1, a1, …, sT

t = 1,2,…, T
Rt

θ ← θ + αγtRt ∇θln πθ(at |st)

Rt

Qπ(st, at) = 𝔼π[Rt |st, at] A(s, a) = Q(s, a) − V(s)
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Proximal Policy Optimisation (PPO) (J. Schulman et al., 2017)

To improve training stability, avoid parameter updates that change policy too much at 
one step! 

Evolution of Trust Region Policy Optimisation (TRPO): , 
arXiv:1502.05477 

Idea: introduce ratio  and clipped objective function for automatic 
differentiation  

               … a lower bound 
of the . 

Shared weights between policy and value functions,  is an entropy term to guide 
exploration: 

              

LTRPO(θ) = 𝔼[r(θ) ̂Aθold
(s, a)]

r(θ) =
πθ(a |s)

πθold
(a |s)

LCLIP(θ) = 𝔼[min(r(θ) ̂Aθold
(s, a), clip(r(θ),1 − ϵ,1 + ϵ) ̂Aθold

(s, a))]
LTRPO

S

L(θ) = 𝔼t[LCLIP
t − c1LV

t (θ) + c2S[πθ](st)]
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PPO - Pseudocode
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Actor-Critic
….from the perspective of policy gradient.  

Policy gradient methods have two ingredients: a policy model  and the value function. 

Knowing the value function can reduce variance during policy gradient updates. 

 learn the value function as well.  

Critic updates the value function parameters:  or  

Actor updates policy parameters in direction suggested by critic: 

πθ

→

Qw(a |s) Vw(s)
πθ
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Vanilla Actor-Critic
Algorithm: 

1. Initialise  at random; sample  

2. For : 

1. Sample reward  and  

2. Then sample the next action  

3. Update policy parameters:  

4. Compute correction for critic (TD error):  

5. Update the weights of critic (check this line):  

6. Update  and   

This algorithm is “on-policy”: training samples are collected according to the target 
policy (= the one we are optimising at the same time)

s, θ, w a ∼ πθ(a |s)
t = 1…T

rt ∼ R(s, a) s′ ∼ P(s′ |s, a)
a′ ∼ πθ(a′ |s′ )

θ ← θ + αθQw(s, a)∇θln πθ(a |s)
δt = rt + γQw(s′ , a′ ) − Qw(s, a)

w ← w + αwδt ∇wQw(s, a)
a ← a′ s ← s′ 
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DDPG (Lillicrap et al, 2015)

Deep Deterministic Policy Gradient: model-free, off-policy, actor-critic 

Q-function stabilised by experience replay and a slowly updating target networks  

Deterministic policy ; for exploration add noise :  

“soft updates”  conservative policy iteration: :  ( …weights of 
target networks) 

μ(s) 𝒩 μ′ (s) = μθ(s) + 𝒩
→ τ ≪ 1 θ′ ← τθ + (1 − τ)θ′ θ′ 
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DDPG pseudocode
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TD3 (S. Fujimoto et al, 2018)
Q-learning is known for overestimation of the value function  Double Q-learning etc.  

 Twin Delayed Deep Deterministic (=TD3) = DDPG plus tricks 

๏ 2 Q networks, : clipped double Q learning + target policy smoothing (with ): 

                 … clipped random noise  

๏ Delayed updates of target and policy networks 

→
→

Q1, Q2 ϵ

y = r + y min
i=1,2

Qθ′ i
(s′ , πϕ′ 

(s′ ) + ϵ) ϵ ∼ clip(𝒩(0,σ), − c, c)
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TD3 pseudocode
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Comparison of algorithms - AWAKE steering

Policy-gradient algorithm PPO versus NAF 
for AWAKE steering problem in simulation:

TD3 versus NAF for AWAKE steering 
problem in simulation: similar performance
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Model-based RL
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Model-based RL
What if we knew the transition model ? 

๏ Often we do know the dynamics  Monte Carlo Search Trees, LQR,… 
✴ Games (chess,..) 

✴ Easily modelled systems (e.g. navigating a car) 

✴ Simulated environments (AWAKE steering environment,…) 

๏ Often we learn the dynamics  will focus on this! 
✴ System identification - fit unknown parameters of a known model 

✴ Learning - fit a general-purpose model to observed transition data 

Does this make things easier?  Often, yes!

f(st, at) = st+1

→

→
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Let’s learn the model…
Learn  from data and then plan through it 

Algorithm: 

1. run base policy  (e.g. random policy) to collect  

2. learn dynamics  to minimise  

3. plan through  to choose actions 

…works particularly well if can go physics-based and just fit a few parameters of model. 

Potential issue distribution mismatch, model bias from data collection process.

f(st, at)

π0(at |st) 𝒟 = {(s, a, s′ )i}
f(s, a) ∑

i

∥f(si, ai) − s′ i∥2

f(s, a)
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Improved algorithm 0.1

Collect data according to representative policy…

1. run base policy  (e.g. random policy) to collect  

2. learn dynamics  to minimise  

3. plan through  to choose actions 

4. execute those actions add the resulting data  to 

π0(at |st) 𝒟 = {(s, a, s′ )i}
f(s, a) ∑

i

∥f(si, ai) − s′ i∥2

f(s, a)
{(s, a, s′ )j} 𝒟
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Improved algorithm 1.0
How to deal with model errors… long-term accumulation of errors during planning 

We “replan”! 
1. run base policy  (e.g. random policy) to collect  

2. learn dynamics  to minimise  

3. plan through  to choose actions 

4. execute the first planned action, observe resulting state  (MPC)  

5. append  to 

π0(at |st) 𝒟 = {(s, a, s′ )i}
f(s, a) ∑

i

∥f(si, ai) − s′ i∥2

f(s, a)
s′ 

{(s, a, s′ )j} 𝒟

Ev
er

y 
N

 s
te

ps
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Example: AWAKE steering 
Number of training steps N = 1, i.e. learn dynamics only once. MPC algorithm: iLQR 

Dynamics model trained on 200 datapoints collected with random policy.

N. Bruchon et al., 2020
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Improved algorithm 1.1
How to deal with model errors… long-term accumulation of errors during planning 

We “replan”! And use uncertainty-aware models
1. run base policy  (e.g. random policy) to collect  

2. learn dynamics  to minimise  with uncertainty 

3. plan through  to choose actions, take action with high reward in expectation 
4. execute the first planned action, observe resulting state  (MPC)  

5. append  to 

π0(at |st) 𝒟 = {(s, a, s′ )i}
f(s, a) ∑

i

∥f(si, ai) − s′ i∥2

f(s, a)
s′ 

{(s, a, s′ )j} 𝒟

Ev
er

y 
N

 s
te

ps
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An example: GP-MPC
 GP-MPC…very sample-efficient, shallow model-based RL 

๏ Learn dynamics as GP, optimise for cumulative reward in virtual rollouts 

The idea in more detail: 

๏ Learn transition model:  where  is GP  

๏ Define cumulative reward  over horizon  in virtual rollouts   

๏ Find sequence of actions , making use by defining an acquisition 
function and derivatives wrt  

๏  optimise at each iteration; allows to treat time-varying systems, constraints 

๏ See also:  arXiv:1706.06491  

→

st+1, rt = f(st, at) f

J =
h

∑
k=1

rk h

a1:h = arg max J
a1:h

→
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Example: Combine BO with MPC - GP-MPC
Tested idea on 50 Hz control for the SPS slow extracted spill in simulation 

Objective: correct norm. amplitude of 50 Hz component  such that  
,  

Aspill Aspill < 0.15
⃗s = [Aspill, ϕspill, Acorr, ϕcorr] ⃗a = [ΔAcorr, Δϕcorr]

r = − A2
noise + A2

corr + 2AnoiseAcorr cos Δϕ

Episodic training of 50 Hz spill control
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Towards algorithm 2.0
Use “model-free” RL algorithms together with the dynamics model to generate synthetic 
samples 

 "model-based acceleration” for model-free RL 

To avoid issue with error accumulation along long horizons, go off-policy and short 
rollouts.

→

run  with true dynamicsπ0
run  with learned dynamicsπ0

Error accumulation as function of time
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Algorithm 2.0  Dyna-Style Algorithms→
Model-based RL with short rollouts 

See: Algorithm Dyna by R. S. Sutton: Integrated architectures for learning, planning and 
reacting based on approximating dynamic programming. (1990)  

1. run base policy  (e.g. random policy) to collect  

2. learn dynamics  to minimise  

3. pick states  from  use   to make short rollouts from them 

4. use both real and model data to improve  with off-policy RL  

5. run , append the visited  to 

π0(at |st) 𝒟 = {(s, a, s′ )i}
f(s, a) ∑

i

∥f(si, ai) − s′ i∥2

si 𝒟 f(s, a)
πo(a |s)

π0(at |st) {(s, a, s′ )j} 𝒟
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General “Dyna-style” model-based RL recipe

1. collet some data, consisting of transitions  

2. learn model  (and optionally,  

3. repeat  times: 

1. sample  from buffer 

2. choose action  (from , from , or random) 

3. simulate  (and  ) 

4. train on  with model-free RL 

5. (optional) take  more model-based steps  

(s, a, s′ , r)
̂p(s′ |s, a) ̂r(s, a))

K
s ∼ ℬ

a ℬ π
s′ ∼ ̂p(s′ |s, a) r = ̂r(s, a)

(s, a, s′ , r)
N

 only requires short (as few as one step) rollouts from model→
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Our DYNA code (2020)
Use model-free RL agent as provided by stable-baselines3 

Simple MLP for dynamics and reward models: wrapped in “surrogate environment”

Example: AWAKE H steering

50 initial data points for model

3 tests: 3rd test score 10/10
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EXTRA
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Towards state-of-the-art Policy Gradient
Use idea of introducing bias:  

 

with                       

Importance sampling…e.g. if collecting data with different policy than target policy. 

 

g = ∇θJ = 𝔼τ∼pθ(τ) (
T

∑
t=1

∇θlog πθ(at |st)) (
T

∑
t=1

r(st, at))
Ψt

≈ 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ(at |st))] Q̄π(st, at)

Aπ(st, at) = Qπ(st, at) − Vπ(st) ≈ 𝔼τ∼pθ(τ) [(
T

∑
t=1

∇θlog πθ(at |st))] Āπ(st, at)

𝔼x∼p(x)[ f(x)] = ∫ p(x)f(x)dx = ∫
q(x)
q(x)

p(x)f(x)dx = ∫ q(x)
p(x)
q(x)

f(x)dx = 𝔼x∼q(x) [ p(x)
q(x)

f(x)]


