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So WHERE and HOW can we use Deep Learning 
in HEP?

NB: LLMs are also quickly entering our domain 
too  
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Deep Learning in HEP
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B. Hooberman 
et al. (NIPS 

2017)

DL can recognize patterns in large complicated data sets 
Better performances if applied directly to raw data 

Re-cast physics problems as “DL problems” 
Interpret detector output as images and apply techniques borrowed from 
computer vision 
Interpret physics events as sentences  and apply NLP techniques 

Intense R&D activity 
Adapt DL to HEP requirements 

In terms of model interpretability 
Results validation against classical methods 
Detailed systematics 

Adopting ”new” computing models 
Accelerators and dedicated hardware 
HPC integration 
Cloud resources 
Big Data platforms
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New Physics search as a Big Data problem
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New physics is 
down here !

> 600 PB of collisions data

cms.cern
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LHC data processing
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cms.cern

Offline
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LHC Run 3 running conditions
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Fact sheet: 
Since 2015 we have collisions at 
6.5 TeV (6.8 TeV from 2022) 
25 ns bunch crossing 
Peak collision rate at 30 MHz 
(2017-2018) 
LHC peak instantaneous 

luminosity of 2 × 1034cm−2s−1 

(2023) 
About 50 pileup collisions 

https://home.cern/news/news/accelerators/accelerator-report-10-000-lhc-fills
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Online Machine/Deep Learning
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Constraints on Latency (Need fast inference) 
—> can we deploy ML/DL on dedicated ASICs, FPGAs?  

Constraints on Model Complexity (need to find ways of compressing / 
reducing ML/DL size or simplify graph topology)  

—> how do we introduce quantisation, compression, distillation, … 
Constraints on the quality of data available (Very close to raw data. Physics 
quantities are known with limited resolution or limited detector information )  

—> is this really a limitation for ML/DL ?

There are a lot of possible applications for ML/DL in the real time detectors operation 
Data Quality Monitoring , Adaptive Data Acquisition Systems , Triggers 

mailto:ilaria.luise@cern.ch


• We can process only a minimal fraction of collider data 
• Keep only interesting events

Real-time data processing at CMS

The CMS Collaboration, arXiv:2403.16134 [hep-ex]

Constrained by 
readout and size 
of raw data to 
transfer4 μs fixed latency 

Information from calorimeters 
and muons

Constrained by HLT 
farm “size” (Ex. 600 
ms/event in 2018) 

NB. DAQ output 
bandwidth at  20 GB/s for 
Run 3 is not a bottleneck

https://arxiv.org/abs/2403.16134


Model dependent search results

10How to insure we do not miss potential discoveries? 
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Model agnostic searches
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What if BSM is not like any of 
the models we have searched 
for?  
There are a lot of BSM scenarios 
that are not covered by existing 
searches! 

Deep Learning allows us to go model agnostic  
—> Anomaly Detection

mailto:ilaria.luise@cern.ch
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Two types of anomaly searches
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Overdensity detection:  Resonant searches … 
Pros:  

• Re-parametrization invariant 
Cons: 

• Prior knowledge of bkgd distribution 
• Performance suffers when signal is too rare

Main assumption: P(anomaly) ≪ P(normal)

Outliers/point anomalies: Detector malfunctions, Background-free 
search… 

• Pros: 
• Can be fully unsupervised 
• Suitable for very rare anomalies 

• Cons: 
• Definition of low p(x) is not invariant but is parametrization 

dependent

mailto:ilaria.luise@cern.ch
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Different methodologies (supervised)
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Classifier trained using data and a 
reference model 
• Binned distributions are replaced by NN-
approximated smooth functions 
• Procedure gives a p-value and the 
likelihood ratio 
• Sensitive to both group and low-density 
anomalies 
• Reliant on simulation 
• But scales badly with N observables…

• Two samples, one signal-enriched 
• Train a supervised classifier to 
distinguish between them 
• Monotonically related to 
LS/B for f1 > f2

Metodiev, Nachman, Thaler (arXiv 1708.02949)

Learning new physics from a machine - D’Agnolo & Wulzer 

mailto:ilaria.luise@cern.ch


AD with Variational AutoEncoders

VAE as model-independent new 
physics selection tool 
(unsupervised)


Train on known physics 
Monte Carlo 
Real detector data 

Minimise input-output difference 
Anomalies will exhibit large error! 

Build an anomaly score

First demonstrations as early as 2018 !

arXiv:1811.10276 
arxiv: 2005.01598 
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Currently running examples
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A. Gandrakota,  
ICHEP2024
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Currently running examples
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A. Gandrakota,  
ICHEP2024
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	 hls4ml 

•  https://github.com/hls-fpga-machine-
learning/hls4ml 

•  https://fastmachinelearning.org/hls4ml/

High Level Synthesis for deployment on FPGAs

• AXOL1TL and other models leverage hls4ml 

for inference deployment on low latency 

FPGA 

• Ingredients for performance: 

compression: reduce number of synapses or 
neurons 

quantization: reduces the precision of the 
calculations (inputs, weights, biases) 

parallelization: tune how much to parallelize 
to make the inference faster/slower versus 
FPGA resources 

•

AXOL1TL test rates

https://github.com/hls-fpga-machine-learning/hls4ml
https://github.com/hls-fpga-machine-learning/hls4ml
https://github.com/hls-fpga-machine-learning/hls4ml


Anomaly Detection for hardware 

Multi-Module based VAE 
to predict HVCM faults in 
the SNS accelerator, 
CHEP2023 
 

Resilient Variational Autencoder for 
Unsupervised Anomaly Detection at the SLAC 
Linac Cohrerent Light Source, CHEP2023 
 

RF cavities of FEL@SLAC : 
Create “outlier” path through the 
network and decide according to 
probabilistic inference

18

High Voltage Converter Modulators for 
SNS Linac: a multi-module AE performs 
better than dedicated separate modules



Other online applications 

Continual learning

Embedded Continual 
Learning for HEP, 
CHEP2023

Useful in online environment and changing 
conditions. Avoid retraining. Strong computational 
constraints. Proposed lightweight alternative to SGD.

The Deployment of Realtime 
ML in Changing 
Environments, CHEP2024

 CMS L2 
trigger Vertex 
finding

SR models dramatically reduce latency and resources 
compared to NN

Symbolic regression

Symbolic Regression on 
FPGAs for Fast Machine 
Learning Inference, Thu 11/05 T 

tagger

More GNN, Object 
condensation and 
Fuzzy Clustering in 
Belle II!

Improved Clustering in the 
Belle II Electromagnetic 
Calorimeter with Graph Neural 
Networks, Thu 11/05

19
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Selecting the unknown
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Continual learning for 
online environment

Embedded Continual Learning for HEP, 
CHEP2023

Useful with changing conditions. Avoid retraining. Strong 
computational constraints. Proposed lightweight 
alternative to SGD.

Unsupervised and model independent 
tools for new physics searches

Arxiv:1811.10276. Evolved into:  
Knapp, Oliver, et al. "Adversarially Learned Anomaly Detection on 
CMS Open Data: re-discovering the top quark." The European 
Physical Journal Plus 136.2 (2021): 236.

A GRAPHIC REPRESENTATION 
OF DATA (…) UNTHINKABLE 
COMPLEXITY 

William Gibson

mailto:ilaria.luise@cern.ch
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Offline processing (reconstruction) challenges
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Tracking
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Exa.TrkX
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https://exatrkx.github.io/
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Exa.TrkX: EggNet (a Graph Attention Network)
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EggNet: An Evolving Graph-based Graph Attention Network for Particle Track Reconstruction (To be) Presented at CHEP 2024.

mailto:ilaria.luise@cern.ch
https://arxiv.org/abs/2407.13925
https://indico.cern.ch/event/1252748


Tracking (highlights from CHEP2023)

Tracking as object condensation

Simultaneously learn 
embedding similarity 
space and  condensation 
score per hit (a higher 
score is a more “attractive” 
point charge in similarity 
space 

A new twitter inspired 
loss: the influencer 
loss !

End-to-End Geometric 
Representation Learning for 
Track Reconstruction

An Object Condensation Pipeline for 
Charged Particle Tracking 

Full ML pipeline for CLAS12 @JLAB

Track Identification 
for CLAS12 using AI

Tracking represents 80% of CLAS12 processing time 

Train a MLP to classify tracks and and AE to account 
for missing hits

35% improvement

Develop 
denoising AE  for 
high luminosity 
runs

Graph Neural Networks
Novel fully-heterogeneous GNN designs for track reconstruction at the HL-
LHC

+ BESIII track 
reconstruction 
algorithm based 
on machine 
learning



Sofia Vallecorsa, Ilaria Luise CERN - sofia.vallecorsa@cern.ch | ilaria.luise@cern.ch

Jets
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Jets represent a major area of applications for ML.  
See ML4Jets https://indico.cern.ch/event/1253794/overview  

• Stable particles defined by MC generators:"Truth jets”.


• Charged-particle tracks: “Track Jets”. Particularly useful for 
pile-up mitigation or jet tagging. 


• Calorimeter energy deposits: “Topo Jets”. Requires 
calorimeter cells clustering and calibration. 


• Combining tracks and energy deposits: “Particle Flow jets” 
exploit the best of two very different calorimeters


Tracks info is limited to charged-particles, while topo-clusters 
are built from both charged and neutral particles


Angular resolution of the trackers is “still” better than 
calorimeters (important for vertex finding). Calorimeter also 
extend pseudo rapidity coverage.


Inner detector momentum resolution is best for low energy 
tracks. Energy resolution of the calorimeters is better than the 
momentum resolution of the inner detector.

mailto:ilaria.luise@cern.ch


Point Cloud Transformers

https://iopscience.iop.org/article/10.1088/2632-2153/ac07f6/meta

Self Attention on point-cloud particle data learns “semantics”

• SA layers extract different information for 
each jet (jet sub-structure) 

• Increased relevance to harder sub-jets in 
the case of Z boson, W boson, and top quark 
initiated jets.  

• Light quark and gluon jets have 
homogeneous radiation pattern



Reconstruction (Highlights from CHEP2023) 

A Deep-Learning Reconstruction 
Algorithm for Cluster Counting

Hybrid RNN/CNN for robust PID based on 
dN/dx cluster counting in drift chambers

RNN for peak finding and CNN 
for peak clustering  determine 
the number of clusters per particle 
trajectory.

Improved Primary Vertex finding 
@ATLAS and LHCb

UNet based 
architecture in 
LHCb

Advances in developing deep neural networks for finding 
primary vertices in proton-proton collisions at the LHC. Tue



(Beyond Colliders) LAr TPC imaging

End-to-end, ML-based 
Reconstruction Chain 
for Particle Imaging 
Detectors

End-to-end reconstruction 
pipeline integrates various state-
of-the art ML architectures.

Pandora: hybrid Deep Learning 
+ algorithmic pattern 
recognition outperforms previous 
binary decision tree algorithm.

Nugraph2: 2nd generation of hit 
labelling GNN from ExaTrk  
Performance boosted through 
application of Nexus Convolutions to 
multi-head attention message 
passing : 70%  98% accuracy

Neutrino interaction 
vertex-finding in a DUNE 
far-detector using 
Pandora deep learning

A Graph Neural Network for 3D 
Reconstruction in Liquid Argon 
Time Projection Chambers 



Monte Carlo Simulation

30

Calorimeters!

Monte Carlo computational costs



Fast detector simulation

31
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Synthetic data generation through DL
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Diffusion models 
for shower 
generation, 
CHEP2023

A major task, requiring high accuracy. 
It is computationally expensive (typically Monte 
Carlo based) 
Ideal task for state-of the-art generative AI 

Rehm, Florian, et al.  
arXiv:2105.08960 (2021).

CYBERSPACE. A CONSENSUAL HALLUCINATION EXPERIENCED DAILY BY BILLIONS OF 
LEGITIMATE OPERATORS 

William Gibson

mailto:ilaria.luise@cern.ch


GAN FOR CALORIMETERS

FastCaloGAN: 300 GANs  
IN PRODUCTION 
CHEP 2023

Zhang H. et al. Self-attention generative adversarial 
networks. – PMLR, 2019 С. 7354-7363.

Self-Attention GANs 
F. Ratnikov, A. Rogachev: https://indico.cern.ch/event/948465/
contributions/4324135

ATLAS LHCb



Increasing complexity  

28.05.24

GAN – AutoEncoder hybrid

Buhmann, Erik, et al. 
"Getting high: high fidelity 
simulation of high granularity 
calorimeters with high 
speed." Computing and 
Software for Big Science 5.1 
(2021): 1-17.

Krause, Claudius, and David Shih. "CaloFlow II: 
Even Faster and Still Accurate Generation of 
Calorimeter Showers with Normalizing 
Flows." arXiv:2110.11377 

Normalizing Flows
CMS



Renato Cardoso | Foundation Models for physics simulation

Conditional Diffusion based Transformer
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26 March 2024

https://arxiv.org/abs/2212.09748

Architecture based on visual 
transformers 

Input condition on Energy, Particle 
Trajectory, Geometry 

Heavy data preprocessing necessary 
to map calorimeter geometry to 
image tiles 

Maybe different data representation 
could be more convenient? 

Results: 

Good accuracy throughout all 
profiles 

Cell energy shows particular 
good results compared to 
other generative models

R. Cardoso, CHEP 2032



More Simulation

Deep learning to match fast-sim to fullsim 
at analysis level Increases fidelity of 
fastsim

Refining fast simulation 
using machine learning

A normalizing-flow based end-to-end super-fast-sim, 
transforming Monte Carlo events directly into high-level 
analysis objects.

Flashsim: a ML based 
simulation for analysis 
datatiers Mon 08/05

More interesting developments in constructing ML models for 
event generation (hadronization) or to have fundamental 
data-driven ML representation for hadronic physics models in 
Geant4

MLHad: Simulating 
Hadronization with Machine 
Learning

Simulation of Hadronic 
Interactions with Deep 
Generative Models

Generator-matched jets



Detectors measure the results of  particle 
interactions with matter 

But we are interested in the particle production 
processes  

Go back from experiments to theory:  

• Disentangle production process from the 
experimental setup  

• Bayesian problem

Comparing experimental data to theory

18.04.22

*quote from P. Vischia

“How to invert a matrix that should not be inverted”*



Inverse problem: given observations y 
determine underlying hidden parameters x 

Use invertible networks 

• Train on the forward process x → y 

• Run backward y → x to get prediction  

• Add  latent variable z to compensate 
information loss during forward process 

Inverting the experiment
arxiv:1808.04730 
arxiv:2006.06685TIME MOVES IN ONE DIRECTION. MEMORY ANOTHER. WE ARE THAT STRANGE SPECIES THAT 

CONSTRUCTS ARTEFACTS INTENDED TO COUNTER THE NATURAL FLOW OF FORGETTING  
William Gibson


