

Advanced Topics: Quantum computing & ML in other scientific domains

CERN

Lecture 5 Sofia Vallecorsa | Ilaria Luise

Thematic CERN School of Computing on Machine Learning 18th October 2024

Foundation models for science: AtmoRep Quantum Machine Learning

Weather and climate

The AI revolution in weather and climate

The future of observational data

Need to find sustainable ways to store all these data

The first breakthrough: weather & climate

Large datasets: First time that an Al-model trained on TBs of pre-processed observations outperforms the numerical models for a 10 day forecasts

All these models have been trained on a *single* task: weather forecasting

State of the art - numerical models: IFS

Europe: Integrated Forecasting System (IFS)

Language: Fortran-based Length: over 2 million lines **US:** Global Forecast System (GFS) **Japan:** Global Spectral Model (GSM2303) ...

Who? What? Where?

... but what about academia? Are the research centres following the trend?

Real time AI-based forecasts @ ECMWF

THE RISE OF DATA-DRIVEN WEATHER FORECASTING A FIRST STATISTICAL ASSESSMENT OF MACHINE LEARNING-BASED WEATHER FORECASTS IN AN OPERATIONAL-LIKE CONTEXT

A PREPRINT V2

Evaluation costs

Numerical model - processing time: hour(s) AI-based model inference time: 1 A100 for 2 min for a 10 day forecast → Ensemble: 50x

llaria Luise, CERN - ilaria.luise@cern.ch

Can we go beyond?

Building foundation models for science

AtmoRep: Introduction

Atmosphere:

- Set of complex non-linearly coupled phenomena involving a wide range of scales
- Very large amounts of observational data available in a format suitable for large scale ML

Common challenges:

CERN

Model complex, nonlinear phenomena and improve current simulations

Earth science: eg. better understand convection phenomena CERN: eg. particle-jet showers reconstruction

Explore potential of unsupervised learning for scientific applications

Earth science: eg. early detection of extreme events CERN: eg. anomaly detection

Condense dataset information in a compact representation

eg. condense the info in a few GB rather than TB

Common Goal:

Use unsupervised learning to build a <u>task-independent</u> data-driven model to <u>encapsulate complex physics phenomena</u>

CERN Innovation Programme

on Environmental Applications

CIPEA

What is a task-independent model for us?

Encapsulate the spatio-temporal evolution of a dynamical system

The project in a nutshell

ERA5 reanalysis

2				5	9			10
			0	Do				
		D	20	9	5	50		F
5	00	-	2	6		h		
6			0		0	30		
-			3	S.C			2	

 \sim

 \sim

50 TB

The project in a nutshell

ERA5 reanalysis

Spatio-temporal representation of atmospheric dynamics

Model given by the trained neural network

R&D at Juelich SSC: 4x10⁶ GPU hours granted in 2023

Transformers architecture

Applications: one model for multiple purposes

Need for a **stochastic approach**

Key Ingredient: The training protocol

Use an extension of BERT masked language modelling from self-supervised trainings in NLP

Random sampling of neighbourhoods for training

Split cube in small space-time regions (3D cubes) \rightarrow tokens

Mask random tokens within the hyper-cube and predict them Large masking ratios above 80% using full masking, noise and climatology

Default: 12 x 6 x 12 tokens with 3 x 9 x 9 grid points

Ilaria Luise, Sofia Vallecorsa CERN - ilaria.luise@cern.ch I sofia.vallecorsa@cern.ch

BERT

The AtmoRep workflow

pre-processed historical observational record x(t) (ERA5 reanalysis)

Ilaria Luise, Sofia Vallecorsa CERN - ilaria.luise@cern.ch I sofia.valleco sa@cern.ch

Task-specific fine-tuning

Task-specific fine-tuning

Goal: improve model performance for a specific task e.g. forecasting, downscaling...

Attention maps and interpretability

Inspect the self-attention mechanism:

can we identify physics phenomena (e.g. hurricane formation) before they are even created?

Attention maps and interpretability

Inspect the self-attention mechanism:

can we identify physics phenomena (e.g. hurricane formation) before they are even created?

Results: Target - ERA5

specific humidity, June 15th 2018 13:00 UTC

Results: Prediction - AtmoRep

specific humidity, June 15th 2018 13:00 UTC

Bias corrections

Precipitation rates are known to be suboptimal in ERA5 Use RADKLIM radar data to fine-tune the precipitation rates in AtmoRep

Bias corrections: Results

Precipitation rates are known to be suboptimal in ERA5 Use RADKLIM radar data to fine-tune the precipitation rates in AtmoRep

Ilaria Luise, Sofia Vallecorsa CERN - ilaria.luise@cern.ch I sofia.vallecorsa@cern.ch

Quantum Machine Learning

The CERN Quantum Technology Initiative was launched in 2020

Understand the impact of quantum technologies in HEP

Voir en <u>français</u>

CERN meets quantum technology

The CERN Quantum Technology Initiative will explore the potential of devices harnessing perplexing quantum phenomena such as entanglement to enrich and expand its challenging research programme

30 SEPTEMBER, 2020 | By Matthew Chalmers

The AEgIS 1T antimatter trap stack. CERN's AEgIS experiment is able to explore the multi-particle entangled nature of photons from positronium annihilation, and is one of several examples of existing CERN research with relevance to quantum technologies. (Image: CERN)

Quantum simulation and HEP theory applications Quantum Computing Quantum Sensing Quantum Communication

Quantum potential...

Source: McKinsey 2023

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/ quantum-technology-sees-record-investments-progress-on-talentgap

Principles of quantum mechanics enhance computations

Superposition leads to parallelism

- \rightarrow exponential speedup?
- Entanglement
 - \rightarrow non linear correlation and classical intractability?

Operations (gates) are unitary transformations

 \rightarrow reversible computing?

Output is the result of a quantum state measurement according to Born rule

 \rightarrow stochastic computation ?

No-cloning theorem

 \rightarrow information security

Quantum state coherence and isolation

ightarrow computation stability and errors

Qubit state collapses

 \rightarrow reproducibility?

500	>75%	2022: \$2.35 billion
	of total investment allocated to QC players	2021: \$2.33 billion
.00		
00	Investment in	
	quantum	
	technology	
500		
0		0016 0019 0000

^{&#}x27;Based on public investment data recorded in PitchBook; actual investment is likely higher. Source: PitchBook

Simple qubits

Z. Minev, Qiskit Global Summer School 2020

- In zero resistenze circuit, current will oscillate
- Microwaves can excite currents in a superposition of states

Ex. Google, IBM, ...

07.10.24

Qubits and algorithms

- Basic Unit of Quantum Computation
 - Classical bits are binary "0 or 1"
- Quantum Mechanics predicts **superposition states**

(exponential storage information)

- Dirac notation $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
- Operations are **unitary** matrices
 - Input and output states have the same dimension
 - Some classical gates (or, and, nand, xor...)
 cannot be implemented directly
 - Can **simulate** any classical computation with small overhead

Interest in multi level representations: qutrits..

Noisy Intermediate-Scale Quantum devices

Trapped ion technology: *ionQ* with all-to-all connectivity

- Limitations in terms of **stability** and **connectivity**
 - Circuit optimisation
- **De-coherence**, measurement errors or gate level errors (**noise**)
 - Specific error mitigation techniques
 - Prefer algorithms **robust against noise**
- Problem size
- Initially integrated in hybrid quantum-classical infrastructure (HPC + QC)
 - Quantum Processing Units as new "hardware accelerators"

Superconducting qubits: *IBM Seattle*

Quantum Machine Learning

Quantum Computing to improve ML

- Speed-up and complexity
- Sample efficiency
- Representational power
- Energy efficiency???
- Evaluate performance on realistic use cases
- QPU as accelerators within classical infrastructure?

Study classical intractability:

Focus on quantum circuits that are **not efficiently simulable classically?**

Cerezo, Marco, *et al. "Variational quantum algorithms."*Nature Reviews Physics3.9 (2021)

IBM Quantum RoadMap

Development Roadmap

2020 🥥 2024 2025 2026 2027 2028 2029 2033+ 2016-2019 2021 🖌 2022 🖉 2023 🥥 Beyond 2033, quantum-Run quantum circuits Release multi-Enhancing quantum Bring dynamic Enhancing quantum Improving quantum Enhancing quantum Improving quantum Improving quantum Improving quantum Improving quantum on the IBM Quantum Platform dimensional execution speed by circuits to unlock execution speed by circuit quality and execution speed and circuit quality to circuit quality to circuit quality to circuit quality to centric supercomputers 100x with Qiskit speed to allow 5K allow 7.5K gates allow 10K gates allow 15K gates allow 100M gates will include 1000's of roadmap publicly more computations 5x with guantum parallelization with with initial aim Runtime serverless and partitioning and logical gubits unlocking gates with focused on scaling Execution modes parametric circuits guantum modularity the full power of quantum computing Platform Data Scientist General purpose OC libraries ی Functions Mapping Collection Specific Libraries Code assistant Middleware Researchers telligent Orchestration ranspilerService 🛛 🟅 Diskit Runtime Quantum Physicist IBM Quantum Experience 0 Dynamic circuits 0 Execution Modes 0 ٢ Flamingo (5K) Flamingo (7.5K) Flamingo (15K) Flamingo (10K) Error Mitigation Error Mitigation Error Mitigation Error Mitigatio Error Mitigation Ø 0 Early Eagle 9 5k gates 133 qubits 5k gates 156 qubits 7.5k gates 156 qubits 10k gates 156 qubits 15k gates 156 qubits 100M gates 200 qubits 1B gates 2000 qubits Benchmarking 27 qubits Benchmarking 127 qubits Canary 5 qubits Albatross 16 qubits Penguin 20 qubits Prototype 53 qubits Ouantum modular Classical modula Ouantum modular Ouantum modular Ouantum modular rror correcte Error corrected 156x7 = 1092 qubits 156x7 = 1092 aubit 133x3 = 399 aubits 156x7 = 1092 qubit 156x7 = 1092 aubit

Innovation Roadmap

IBM Quantum

2024	2025	2026	2027	2028
Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates
Platform				
Code assistant 🛛 🏵	Functions	Mapping Collection	Specific Libraries	
Transpiler Service 🕉	Resource Management	Circuit Knitting x P	Intelligent Orchestration	
Heron (5K) Error Mitigation 5k gates 133 qubits Classical modular 133x3 = 399 qubits	Flamingo (5K) Error Mitigation 5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Flamingo (7.5K) Error Mitigation 7.5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Flamingo (10K) Error Mitigation 10k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Flamingo (15K) Error Mitigation 15k gates 156 qubits Quantum modular 156x7 = 1092 qubits
Resource 🕹 management	Scalable circuit knitting	Error correction decoder		
System partitioning to enable parallel execution	Circuit partitioning with classical reconstruction at HPC scale	Demonstration of a quantum system with real-time error correction decoder		
Flamingo 🕲	Kookaburra		Cockatoo	Starling
Demonstrate scaling with modular	Demonstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Demonstrate path to improved quality with logical communication	Demonstrate path to improved quality with logical gates

Quantum Machine Learning Lifecycle

https://arxiv.org/abs/2103.12257

Models

Variational algorithms (ex. QNN)

Gradient-free or gradient-based optimization Data Embedding can be learned Ansatz design can leverage data symmetries¹

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical **kernel-based training** (**convex** losses)

Identify classes of kernels that relate to specific data **structures**²

Energy-based ML (ex. QBM)

Build networks of **stochastic binary units** and optimise their energy. Quantum Boltzmann Machines has quadratic energy function that follows the Boltzmann distribution (Ising Hamiltonian)

³Jerbi, Sofiene, et al. **"Quantum machine learning beyond kernel methods**." *arXiv:2110.13162* (2021).

Parameter optimization

See C. Rieger's <u>summer students lecture</u>

The parameter-shift rule (gradient-based)

Compute **partial derivative** of variational circuit parameter θ , alternative to analytical gradient computation and classical finite difference rule (numerical errors and resource cost considerations)

$$\begin{array}{l} \theta \rightarrow \ \theta - \eta \ \nabla_{\theta} f \\ & \uparrow \langle \hat{A}(\theta) \rangle \end{array}$$

$$\Rightarrow \nabla_{\Theta} \langle \hat{A} \rangle = u \left[\langle \hat{A} (\Theta + \frac{\pi}{4u}) \rangle - \langle \hat{A} (\Theta - \frac{\pi}{4u}) \rangle \right]$$

Evaluate Quantum Circuit twice at shifted parameters to compute gradient

Gradients decay and Model Convergence

Classical gradients vanish exponentially with the number of layers (J.McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between batches.

Quantum gradient **decay exponentially** in the number of qubits (number of graph paths is exponential in the number of gates)

- Random circuit initialization
- Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
- Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical Review X 11.4 (2021): 041011.)
- Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Large number of measurements: $1/\epsilon^2$ measurements to estimate a cost to precision ϵ

Quantum Generative Models

Learn probability distribution that best describes a data set

Quantum Circuit Born Machine

Sample variational pure state $|\psi(\theta)\rangle$ by projective measurement through Born rule: $p_{\theta}(x) = |\langle x | \psi(\theta) \rangle|^2$.

Implicit and Explicit Models

Classified according to whether or not they **have access to the propability distribution function**

Explicit Models have access to PDF in polynomial time

- Use explicit losses that are defined by probabilities
- Ex. TN or autoregressive models

Implicit models do not have access to PDF. Can sample from it

- Use implicit losses built on samples
- Ex. GAN, QBM, VAE... QCBM...

Explicit

$$\sum_{\boldsymbol{x}} f(\tilde{p}(\boldsymbol{x}), \tilde{q}_{\boldsymbol{\theta}}(\boldsymbol{x}))$$
Ex. KL Divergence
 $D_{\mathrm{KL}}(P || Q) = \sum_{i} P(i) \log\left(\frac{P}{Q}\right)$

$$\begin{bmatrix} \mathbf{mplicit} \\ \mathbb{E}_{x,y} [g(x,y)] \end{bmatrix} \text{Ex. MMD}$$
$$\text{MMD}(\mathbb{P}_r, \mathbb{P}_g) = \left(\mathbb{E}_{\mathbf{x}_r, \mathbf{x}'_r \sim \mathbb{P}_r, \atop \mathbf{x}_g, \mathbf{x}'_g \sim \mathbb{P}_g} \left[k(\mathbf{x}_r, \mathbf{x}'_r) - 2k(\mathbf{x}_r, \mathbf{x}_g) + k(\mathbf{x}_g, \mathbf{x}'_g) \right] \right)^{\frac{1}{2}}$$

Strong impact on trainability!

Kiss O., Grossi M. et all., Conditional Born machine for Monte Carlo events generation, Phys. Rev. A 106, 022612 (2022) 41

Quantum Circuit Born Machine for Event Generation

Born machine:

Produces statistics according to Born's measurement rule using parametrized quantum circuit $|\psi(\theta)\rangle$

$$p_{\theta}(x) = \left| \left\langle x \, \middle| \, \psi(\theta) \right\rangle \right|^2, x \in \{0,1\}^{3n}$$

Train using Maximum Mean Discrepancy loss function:

Muon fixed target scattering experiment

A classification task

Analysis setup

Analysis

Discrimination of the signal over the overwhelming background

Features

- For the each jet we have 8 features: (pT,η,φ,E,b tag,px,py,pz)
- For MET we have 4 features: (pT,px,py,φ)
- For the lepton (electron or muon) we have 7 features: (pT,η,φ,E,px,py,pz)

#features = 8×7(jets)+7(1lepton)+4(MET) = 67

Quantum SVM for Higgs Classification

Input dimensionality reduction through an Auto-Encoder projects to a lower dimension latent space (8,16)

Feature selection + Model	AUC
AUC + QSVM	0.66 ± 0.01
PyTorch AE + QSVM	0.62 ± 0.03
AUC + SVM rbf	0.65 ± 0.01
PyTorch AE + SVM rbf	0.62 ± 0.02
KMeans + SVM rbf	0.61 ± 0.02

Feature selection + Model	AUC
AUC + QSVM	0.68 ± 0.02
AUC + Linear SVM	0.67 ± 0.02
Logistic Regression	0.68 ± 0.02

Data encoding circuit serving as feature map for the 8-qubit QSVM implementation.

Guided Quantum Compression

Two hybrid quantum-classical strategies:

GQC: Joint training

2Steps: The data compression step is independently trained

Latent Space Representation

Results

compression method has significant impact on the classifier performance.

NB: b-tag features are high level features containing information about the quark content

Reinforcement Learning for steering CERN beams

1D beam steering inspired by the CERN North Area transfer line

- Action: (discrete) deflection angle
- State: (continuous) BPM position
- Reward: integrated beam intensity on target
- Optimality: fraction of states in which the agent takes the right decision

Approach based on Q-learning : the reward is estimated using a Q-function

Quality of the Q-function drives performance

- Classical Deep Q-learning (DQN) Feed-forward neural net
- Free-energy based RL (FERL) Quantum Boltzmann machine (QBM)

Quantum Boltzmann Machines

- Create a network of qubits similar to the binary units in a classical Boltzmann machine
- Map network to the quantum computer graph
- Train by minimising the qubits system energy

Free-energy based RL (FERL)

Sample-efficiency is really important given cost of training (beam time)

Classifying quantum data

Saverio Monaco et al., **Quantum phase detection** generalisation from marginal quantum neural network models, arXiv:2208.08748v1.

Generate **quantum states** directly on the device

Train QCNN to classify quantum states

Use marginal datasets \rightarrow **OOD generalization !**

Backup

Future challenges

Scaling:

- Efficiently scaling distributed training to larger models
- Develop the software infrastructure and model architecture suitable for such big models

Accessibility:

- Deployment of the models on the cloud
- we need an integration of the HPC centers to provide **seamless access** and data movement in the background (example: Google Cloud)

Maintenance:

- How to integrate new incoming data
- How to **expand** to new fields/variables without fully retraining the model each time?

Results: Target - ERA5

specific humidity, June 15th 2018 13:00 UTC

Results: Prediction - AtmoRep

specific humidity, June 15th 2018 13:00 UTC

Downscaling

Ilaria Luise, Sofia Vallecorsa CERN - ilaria.luise@cern.ch I sofia.vallecorsa@cern.ch

Bias corrections

Precipitation rates are known to be suboptimal in ERA5 Use RADKLIM radar data to fine-tune the precipitation rates in AtmoRep

Bias corrections: Results

Precipitation rates are known to be suboptimal in ERA5 Use RADKLIM radar data to fine-tune the precipitation rates in AtmoRep

Ilaria Luise, Sofia Vallecorsa CERN - ilaria.luise@cern.ch I sofia.vallecorsa@cern.ch