MINIMIZATION OF ELECTRICITY
CONSUMPTION IN COOLING AND
VENTILATION SYSTEMS

tCSC Machine Learning 2024, Split, October 2024.

Nikolina Bunijevac
EN/CV/CL




Research motivation

Residential buildings CERN/LHC electricity consumption
electricity consumption

m HVAC (Heating, ventilation, and air conditioning) m other = Cooling and ventilation ~ m other
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System: Air Handling Unit

Simplified model scheme

1 2 3 4
mixing chamber cooling coil heater fan
L ui_1 T <\
r 2 " —Dl_z_ u3 :-]_ ud
AN X l
return supply
air air ‘ 7




System diagram

input: controls
input: measurements
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Modelling: methodology
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Optimization

optimization variables: ul, u2, u3

k .
constraints: 0 < u*[t] <100, kin {1,2,3},Vt

> control constraints
> variable constraints u?[t] *u[t] =0, vt.

TsuppLyyy = 15°C < Tsyppry < TsypprLyy e = 30°C,

Trongyw = 21°C < Tzong < Tzonpy., = 24°C.

-optimization function: estimation of electricity consumption J= Z ][t]

for the prediction horizon of 2h:
] t in prediction horizon
-genetic algorithm



Results: Advanced vs classical controls

- comparison in virtual environment:
o existing controls (PID) vs advanced controls (MPC)

- tested on 10 datasets (running time: 2h)

- results:

Average electricity consumption is 5.96kWh with MPC, compared to 35.5kWh with standard
controls, with average relative improvement of around 77%.
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- advance controls: damper management

- PID: more active components
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Results

- constraints violated
- unusual system response

- unusual PID response
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Conclusion

- promising results, but too optimistic (savings 77% comparing to 20% in literature)

- improvements:
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° improving model: = =1 = = o
o dataset, architecture, training =

. : timizati loorithm: ;
Improving optimization algorithm: — Genetic algorithm: implementation
> faster execution = faster test comparison | ... I

> tunning PID for fair comparison e
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Discussion




Genetic algorithm: implementation

- prediction horizon: 2h (Ts = 15min = 8 points)

- optimization variable binary representation for 1 pt in time:

ul w2/ w23 | s

° bits in total: 8%12 = 96 bits/optimization

- parameters: POP SIZE 60
NUM_GENERATIONS 3

CROSSOVER_PROB 0.5

MUTATION PROB 0.4
TOURNAMENT SIZE 3




