

ML in Data Analysis: Systematic Uncertainties with ML

Lecture 4 Sofia Vallecorsa | Ilaria Luise

Thematic CERN School of Computing on Machine Learning 18th October 2024

Introduction

Goal of today's lecture: understand the different concepts and link them together 2

Introduction: Why systematics are important?

We are entering in a new era:

After the Higgs boson discovery, the focus shifted toward the measurement of its properties:

Is this "the Higgs"?

"precise" Higgs measurements \rightarrow reduce the uncertainties to increase the sensitivity to tiny BSM induced anomalies.

Systematic uncertainties in HEP

How does a fit (usually) work in HEP?

BDT_{VH} output

How does a fit (usually) work in HEP?

BDT_{VH} output

Nuisance parameters

These boundaries are called "nuisance parameters" and define our <u>level of uncertainty</u> on the montecarlo

- Account for shape differences
- Account for normalisation effects
- Account for uncertainties in the applied corrections or in the theory
- Account for uncertainties associated with limited data

Experimental uncertainties

Muons:

Match tracks in the MS and in the ID (combined muons)

 χ^2_{match}

Jets:

Reconstructed from clusters in the ECAL+HCAL Anti-k_T algorithm

E_T miss: *Missing Transv. Momentum* Momentum imbalance in the transverse plane:

 $\vec{E}_T^{miss} = -\sum_{i \in obj.} \vec{p}_T^i$

Ilaria Luise, LPNHE Paris - Thesis Defense - 27th Sept. 2019

Experimental uncertainties

Some examples:

- Calibrations
- Identification
- Trigger uncertainties
- Jet energy scales
- Flavour tagging
- Energy corrections

Modelling uncertainties

Matrix element matching scale (CKKW): the scale taken for the calculation of the overlap between jets from the matrix element and the parton shower.

Resummation scale (QSF): the scale used for the resummation of soft gluon emissions.

Modelling uncertainties

Statistical uncertainties

The fit model:

Simultaneous binned Likelihood fit built across multiple analysis categories:

Systematic uncertainties are parametrized by **nuisance parameters (NPs)**, constrained with priors:

- ► JES, JER, MET
- Lepton reco, ID, iso, calibration
- b-tagging uncertainties
- ► Lumi, pile-up

- Shapes and relative normalizations across regions
- ► Flavor composition uncertainties
- ► Theory uncertainties: PDF, scales, PS/UE

Z + jets				
Z + ll normalisation	18%			
Z + cl normalisation	23%			
Z + HF normalisation	Floating (2-jet, 3-jet)			
Z + bc-to- $Z + bb$ ratio	30 - 40%			
Z + cc-to- $Z + bb$ ratio	13 - 15%			
Z + bl-to- $Z + bb$ ratio	20 - 25%			
0-to-2 lepton ratio	7%			
$m_{bb}, p_{\mathrm{T}}^{V}$	S			
	W + jets			
W + ll normalisation	32%			
W + cl normalisation	37%			
W + HF normalisation	Floating (2-jet, 3-jet)			
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton)			
W + bc-to- $W + bb$ ratio	15% (0-lepton) and 30% (1-lepton)			
W + cc-to- $W + bb$ ratio	10% (0-lepton) and 30% (1-lepton)			
0-to-1 lepton ratio 5%				
W + HF CR to SR ratio	10% (1-lepton)			
$m_{bb}, p_{\mathrm{T}}^{V}$	S			
$t\bar{t}$ (all are uncorrelated and the transmission of transmission of the transmission of the transmission of the transmission of	ated between the 0+1- and 2-lepton channels)			
$t\bar{t}$ normalisation	Floating (0+1-lepton, 2-lepton 2-jet, 2-lepton 3-jet)			
0-to-1 lepton ratio	8%			
2-to-3-jet ratio	9% (0+1-lepton only)			
W + HF CR to SR ratio	25%			
$m_{bb}, p_{\mathrm{T}}^{V}$	S			
Single top-quark				
Cross-section	4.6% (s-channel), 4.4% (t-channel), 6.2% (Wt)			
Acceptance 2-jet	17% (t-channel), 55% (Wt(bb)), 24% (Wt(other))			
Acceptance 3-jet	20% (t-channel), 51% (Wt(bb)), 21% (Wt(other))			
$m_{bb}, p_{\mathrm{T}}^{V}$	S (t-channel, $Wt(bb)$, $Wt(other)$)			
Multi-jet (1-lepton)				
Normalisation	60 - 100% (2-jet), 90 - 140% (3-jet)			
BDT template	S			

	2	Z + jets		
Z + ll normalisation		18%		
Z + cl normalisation		23%		
Z + HF normalisation		Floating (2-jet, 3-jet)		
Z + bc-to- $Z + bb$ ratio		30-40%		
Z + cc-to- $Z + bb$ ratio		13 - 15%		
Z + bl-to- $Z + bb$ ratio		20 - 25%		
0-to-2 lepton ratio		7%		
$m_{bb}, p_{\mathrm{T}}^{_{V}}$		S		
	V	V + jets		
W + ll normalisation		32%		
W + cl normalisation		37%		
W + HF normalisation		Floating (2-jet, 3-jet)		
W + bl-to- $W + bb$ ratio		26% (0-lepton) and 23% (1-lepton)		
W + bc-to- $W + bb$ ratio		15% (0-lepton) and 30% (1-lepton)		
W + cc-to- $W + bb$ ratio		10% (0-lepton) and 30% (1-lepton)		
0-to-1 lepton ratio		5%		
W + HF CR to SR ratio			Signal	
$m_{bb}, p_{\rm T}$		Cross-section (scale)		0.7% (aa), $27%$ (aa)
$t\bar{t}$ (all are uncorrel	ated betwe	Cross-section (PDF)		$10\% (aa \rightarrow WH) 16\% (aa \rightarrow ZH)$
tt normalisation	Floating	H i L branching frontion		$1.5\% (qq \rightarrow 0.11), 1.0\% (qq \rightarrow 2.11),$
0-to-1 lepton ratio	r iouring	$H \rightarrow bb$ branching fraction		1.7%
2-to-3-jet ratio		Acceptance from scale variations		2.5 - 8.8%
W + HF CR to SR ratio		Acceptance from PS/UE variations for	r 2 or more jets	2.9 – 6.2% (depending on lepton ch
m_{bb}, p_{T}^{V}		Acceptance from PS/UE variations for	r 3 jets	1.8 - 11%
	e:	Acceptance from $PDF + \alpha_S$ variations		0.5 - 1.3%
	Singl	m_{bb} , p_T^V , from scale variations		S
Cross-section	4.6%	$m_{\rm H}$, $p_{\rm T}^V$ from PS/UE variations		S
Acceptance 2-jet	17% (t-	V from PDP:it		0
Acceptance 3-jet	20% (t-	m_{bb} , p_T , from PDF+ α_S variations		5
$m_{bb}, p_{\mathrm{T}}^{*}$		p_T from NLO EW correction		S
	Multi-	jet (1-lepton)		
Normalisation	(60 - 100% (2-jet), 90 - 140% (3-jet)		
BDT template		S		

	Z	Z + jets			
Z + ll normalisation Z + cl normalisation Z + HF normalisation Z + bc-to- $Z + bb$ ratio		18% 23% Floating (2-jet, 3-jet) 30 - 40%			
Z + cc-to- $Z + bb$ ratio		13 - 15%		ZZ	
Z + bl-to- $Z + bb$ ratio 0-to-2 lepton ratio $m_{bb}, p_{\rm T}^V$		20 – 25% 7% S	Normalisatio 0-to-2 lepton Acceptance f Acceptance f	on n ratio from scale variations from PS/UE variations for 2 or more jets	$20\% \\ 6\% \\ 10 - 18\% \\ 6\%$
W + ll normalisation W + cl normalisation		V + jets 32% 37%	Acceptance f m_{bb}, p_T^V , from m_{bb}, p_T^V , from	from PS/UE variations for 3 jets m scale variations m PS/UE variations	7% (0-lepton), 3% (2-lepton) S (correlated with WZ uncertainties) S (correlated with WZ uncertainties)
W + HF normalisation		Floating (2-jet, 3-jet)	m_{bb} , from m	atrix-element variations	S (correlated with WZ uncertainties)
W + bl-to- $W + bb$ ratio		26% (0-lepton) and 23% (1-lepton)	Nerrelietie	WZ	0.007
W + bc-to- $W + bb$ ratio W + cc-to- $W + bb$ ratio 0-to-1 lepton ratio		15% (0-lepton) and 30% (1-lepton) 10% (0-lepton) and 30% (1-lepton) 5%	0-to-1 lepton Acceptance f	n ratio from scale variations	11% 13 - 21%
W + HF CR to SR ratio			Acceptance f Acceptance f	from PS/UE variations for 2 or more jets from PS/UE variations for 3 jets	4%
m_{bb}, p_{T}^{v} $t\bar{t}$ (all are uncorrelation	ated betwe	Cross-section (scale) Cross-section (PDF)	m_{bb}, p_{T}^{V} , from m_{bb}, p_{T}^{V} , from m_{bb} , from m	m scale variations m PS/UE variations atrix-element variations	S (correlated with ZZ uncertainties) S (correlated with ZZ uncertainties) S (correlated with ZZ uncertainties) gg)
tt normalisation	Floating	$H \rightarrow b \bar{b}$ branching fraction		WW	
2-to-3-jet ratio		Acceptance from scale variat	Normalisatio	on	25%
W + HF CR to SR ratio		Acceptance from PS/UE var	riations for	r 2 or more jets 2.9 – 6.2%	(depending on lepton channel)
$m_{bb}, p_{\mathrm{T}}^{V}$	_	Acceptance from PS/UE var	riations for	r 3 jets	1.8 - 11%
	Singl	Acceptance from PDF $+\alpha_8$ v	ariations		0.5 - 1.3%
Cross-section	4.6%	$m_{bb}, p_{\rm T}$, from scale variation	lions		5
Acceptance 2-jet	17% (t-	m_{bb}, p_{T} , from PDE+ α_{s} and	intions		5
Acceptance 3-jet $m_{\pm\pm}$, $p_{\rm T}^V$	20% (t-	m_{bb}, p_T , from PDF $+\alpha_S$ vari p_T^V from NLO EW correction	n		S
	Multi-	iet (1-lepton)			
Normalisation BDT template	6	60 – 100% (2-jet), 90 – 140% (3-jet) S)		

	Z	+ jets		Source of un	lcertainty	σ_{μ}
Z + ll normalisation		18%		Total		0.259
Z + cl normalisation		23%		Statistical		0.161
Z + HF normalisation		Floating (2-jet, 3-jet)		Statistical Statistical		0.101
Z + bc-to- $Z + bb$ ratio		30 - 40%	_	Systematic		0.203
Z + cc-to- $Z + bb$ ratio Z + bl-to- $Z + bb$ ratio		13 - 13% 20 - 25%	Nr	Experimenta	al uncertainties	
0-to-2 lepton ratio		7%	0-to-2 lepton ratio			
$m_{bb}, p_{\mathrm{T}}^{V}$		S	Acceptance from scale variatio	Jets		0.035
	W	′ + jets	Acceptance from PS/UE varia Acceptance from PS/UE varia	$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014
W + ll normalisation		32%	m_{bb} , p_{T}^{V} , from scale variations	Leptons		0.009
W + cl normalisation		37%	m_{bb} , $p_{\rm T}^{\rm v}$, from PS/UE variatio		b-jets	0.061
W + HF normalisation		Floating (2-jet, 3-jet)	m _{bb} , from matrix-element vari	b-tagging	c-iets	0.042
W + bl-to- $W + bb$ ratio	2	26% (0-lepton) and 23% (1-lepton)		0 0000000	light flavour ista	0.000
W + bc-to- $W + bb$ ratio	1	5% (0-lepton) and 30% (1-lepton)	Normalisation		Inght-havour jets	0.009
W + cc-to- $W + bb$ ratio	1	.0% (0-lepton) and $30%$ (1-lepton)	Acceptance from scale variatio		extrapolation	0.008
$W \pm HE CR$ to SR ratio		370	Acceptance from PS/UE varia	Pile-up		0.007 -
$m_{\rm hb}, p_{\rm T}^V$			Acceptance from PS/UE varia m_{11} , m_{22}^V from scale variations	Luminosity		0.023
tī (all are uncorrels	ated betw	Cross-section (scale)	$m_{bb}, p_{\rm T}^V$, from PS/UE variatio			
	neu berm	Cross-section (PDF)	m_{bb} , from matrix-element varia	Ineoretical	and modelling uncer	tainties
tt normalisation	Floating	$H \rightarrow b\bar{b}$ branching fraction		Signal		0.094
2-to-3-iet ratio		Acceptance from scale variat	Normalisation	2181101		0.001
W + HF CR to SR ratio		Acceptance from PS/UE var	riations for 2 or more je	Floating por	malications	0.035
$m_{bb}, p_{\mathrm{T}}^{V}$		Acceptance from PS/UE var	riations for 3 jets	Floating nor	mansations	0.055
	Singl	Acceptance from PDF+ α_S v	ariations	Z + jets		0.055
Cross section	4.6%	m_{bb} , p_T^{γ} , from scale variation	ns	W + jets		0.060
Acceptance 2-jet	17% (t-	m_{bb} , p_T^V , from PS/UE variat	ions	$t\overline{t}$		0.050
Acceptance 3-jet	20% (t-	m_{bb} , p_T^V , from PDF+ α_s vari	ations	Single top q	uark	0.028
$m_{bb}, p_{\mathrm{T}}^{V}$		p_T^V from NLO EW correction	n	Diboson		0.054
	Multi-j	et (1-lepton)	_	Multi-jet		0.005
Normalisation	60	0 - 100% (2-jet), 90 - 140% (3-jet))			
BDT template		S		MC statistic	al	0.070

Uncertainties in Machine Learning

Introduction

A review of uncertainty quantification in deep learning: Techniques, applications and challenges, M. Abdar et al., <u>https://doi.org/10.1016/j.inffus.2021.05.008</u>

22

Let x an input point, f_{ω} a predictive model with parameters ω

Sofia Vallecorsa, Ilaria Luise CERN - sofia.vallecorsa@cern.ch | ilaria.luise@cern.ch

Aleatoric uncertainties

Uncertainty intrinsic within the data, irreducible by improving the model or increasing the dataset A larger dataset does not reduce aleatoric uncertainty, but it helps to give a better estimation!

We can reduce the aleatoric uncertainty **by improving the measurement (reducing the error or noise)** for instance.

Aleatoric uncertainties: examples

Noisy spectra

Text from social media

High Resolution

Low Resolution

Noisy images

Slide from G. Daniel

Sofia Vallecorsa, Ilaria Luise CERN - sofia.vallecorsa@cern.ch | ilaria.luise@cern.ch

Epistemic uncertainties

Represents the lack of « knowledge » or « understanding » of a model on a specific input data point

Two main origins of epistemic uncertainty for machine learning models:

- Estimation error: the training dataset is just a sample of all the possible observable data
- Approximation error: no model can approximate perfectly the unknown « true » function

It can be possible to reduce epistemic uncertainty by using more data and increasing the model complexity

Sofia Vallecorsa, Ilaria Luise CERN - sofia.vallecorsa@cern.ch | ilaria.luise@cern.ch

Epistemic uncertainties: examples

Epistemic uncertainty refers to the uncertainty of the model (epistemology is the study of knowledge) and is **often due to a lack of training data**.

Rare words in a text dataset

Choice of the ML architecture

Uncertainties example

the model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty

Kendal, Gal, NIPS 2017, https://papers.nips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

Can we match these uncertainties with what we have seen in HEP analyses?

- Aleatoric uncertainties
- Epistemic uncertainties
- Experimental uncertainties
- Modelling uncertainties
 - Shape uncertainties (change in distribution)
 - From limited knowledge of the distribution
- Statistical uncertainties

Final answer (debatable, but still..):

Machine Learning	HEP
Aleatoric uncertainty "Statistical" / "Data" Uncertainty Uncertainty Inherent to data 	Detector Noise Resolutions
 Not reduced w/ more data Epistemic uncertainty "Model" Uncertainty Uncertainty from Imperfect knowledge Reduces with more data 	Stat. errors in HEP (? Systematic errors induced by ML model training on finite stats.
Domain Shift • Imperfect model of data generation process	Systematic Uncertainties from data / simulation differences

*Even within the ML community, these terms can be ambiguous

How to reduce uncertainties:

Confidential - Google DeepMind

How might we reduce uncertainty? (ML perspective)

Uncertainty about the model (its structure and parameters)	Initial condition uncertainty	Uncertainty due to limitations of the model (modelled as stochastic dynamics)
Use more historical data and compute for model selection and parameter learning. More data-efficient and compute- efficient model architectures and learning methods	Assimilate more observations (and more precise obs) Better assimilation methods (could be ML-based) Better models used for assimilation (see < and>)	 Subject to enough data: allow the model more: Learning capacity (parameter count,) Computational capacity (resolution, latent size, message-passing steps,) State representation capacity (resolution, latent size,)

Limits of predictability: we expect some uncertainty is irreducible, for anything short of a perfect model and perfect initial conditions

Deterministic vs stochastic models

- For ML models, stochasticity is bound up with physical realism.
- Much easier to produce realistic outputs from a stochastic ML model ('generative model') than a deterministic ML model.
- Technical tip: Deterministic ML loss functions without physical constraints will tend to blurry the hedge of uncertainty

How to represent uncertainties

Confidential - Google DeepMind

How might we represent uncertainty? (ML perspective)

Uncertainty about the model (its structure and parameters)	Initial condition uncertainty	Uncertainty due to limitations of the model (modelled as stochastic dynamics)
 Bayesian ML methods: to obtain approximate 	Ensemble data assimilation	Probabilistic generative models (Diffusion, GANs, VAEs, flows,
 posterior over parameters or over model structures 	Ad-hoc initial perturbations	scoring-rule minimization,)
	End-to-end ML model	Ad-hoc perturbations at each
 Ad-hoc multi-model ensembles: trained from multiple random initializations trained on different resampled datasets 	conditioning directly on obs	timestep

A list

Example: Learning Systematics

- **Ex. Regression**: model aleatoric uncertainty in the output by modelling the conditional distribution as a Normal distribution
- Generative models –based uncertainty learning

Louppe, Gilles, Michael Kagan, and Kyle Cranmer. "Learning to pivot with adversarial networks." arXiv:1611.01046 (2016).

Interpretability

Interpretability Inspires: Explainable AI for DNN Top Taggers, CHEP2023

Sofia Vallecorsa, Ilaria Luise CERN - sofia.vallecorsa@cern.ch | ilaria.luise@cern.ch

FAIR principles

FAIR:

Findability, Accessibility, Interoperability, and Reuse of digital assets

- PHYSTAT seminar: On relating Uncertainties in Machine Learning and HEP [link]
- <u>Uncertainties workshop</u> at Learning to Discover
- Great new ML review in PDG: [Cranmer, Seljak, Terao, 2021]
- Snowmass paper on uncertainty for ML in HEP: [2208:03284]
- Book Chapter: [Dorigo, de Castro Manzano]

Backup

Keys, queries, values

http://jalammar.github.io/illustrated-transformer/

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.

Tranformers

http://jalammar.github.io/illustrated-transformer/

Systematics: training dataset size

- GAN can describe distribution better than training • data
- Needs 10,000 GAN points to match 150 true points ٠
- In terms of information:
 - sample: only data points
 - fit: data + true function
 - GAN: data + smooth, continuous function

GAN can interpolate

Bonus: Montecarlo reweighting with NN

Systematic uncertainties: image similarity

GAN can exhibit **mode-collapse** or **mode-drop** How much **diversity** in the generated sample?

Use the Structural Similarity Index

SSIM
$$(\mathbf{x}, \mathbf{y}) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

where *x*, *y* are two samples to be compared

- Calculated on sliding windows, then averaged.
- Ours is a 3D problem: SSIM computed in xy plane, 3rd dimension is channel
- Adjust C1-C2 to the pixel dynamic range

Systematics: rare events

It is important to reproduce correctly the topology and occurrence of rare events

