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What Pisa can teach us about Deep Learning

People tried to make a very tall tower

Turns out it’s not enough to stack one floor on 
the other if the foundations are not solid

It’s the same thing with Deep Learning:

Simply stacking many neurons is not enough!
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Outline

A few things you may already know, motivated and trying to 
understand why we do them that way

● Bias-variance tradeoff 
● Basic ML recipe
● Training and Bias
● Testing and Variance
● Different architectures
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Bias-variance tradeoff

Encountered in most statistical 
models

We have a bias when the model is 
too simple and it is not capturing 
the true relationship between x and 
y = h*(x)

e.g. a linear model cannot 
reproduce a quadratic one
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Image credit: https://cs229.stanford.edu/main_notes.pdf



Bias-variance tradeoff

Encountered in most statistical 
models

When the model is too expressive, 
we risk fitting patterns of our small, 
finite training sample -- variance 
part of the error

e.g. a 5th-degree polynomial will 
overfit a small sample from a 
quadratic model 

5
Image credit: https://cs229.stanford.edu/main_notes.pdf



Bias-variance tradeoff defines an optimal complexity

We must strike the right balance 
between a simple, highly biased 
model and a complex, variance 
sensitive one

Deep learning requires careful 
tuning and experimentation!
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How do we address this? Basic ML recipe
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Training dataset

How well I am modelling the 
process producing the 

training data

Checks for bias

Test dataset

How well we generalize to 
previously unseen instances 

of the data

Checks for variance

Deploy!
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Data matters!!

10Image credit: https://www.benchling.com/blog/building-a-strong-data-foundation-to-get-machine-learning-and-automation-right



Data matters!!

11Image credit: https://www.benchling.com/blog/building-a-strong-data-foundation-to-get-machine-learning-and-automation-right



Scale drives deep learning progress!

Assuming:

1. You can fit the training set 
pretty well.

2. The training set performance 
generalizes pretty well to the 
test set.

12



Fortunately, we have an abundance of data!

13



We still need to be careful in how we handle them 

Understand your data

● Why is it relevant to your problem?
● Is some important physical information 

missing?
● Is the data correctly labelled?
● Is the data introducing some unwanted 

correlations?
● Is the data still relevant to my problem?
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The art of Training
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What can I do if the training 
performance is lacking?

It means that we are not learning 
the underlying statistical model

Epochs

Lo
ss

Image credit: https://www.javatpoint.com/overfitting-in-machine-learning



The art of Training

16

What can I do if the training performance is lacking?

It means that we are not learning the underlying statistical 
model:

● Train longer
● Bigger network (more capacity)
● Gradients spaces and learning algorithms
● Vanishing/exploding gradients



Moving around the loss space can be tricky!
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Image credit https://www.cs.umd.edu/~tomg/projects/landscapes



Basic gradient descent is limited

The naive stochastic/batch gradient 
descent has many limitations in 
how it navigates complex loss 
spaces:

● sensitive to noise in current 
sample/batch

● easy to get trapped in local 
minimum
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https://optimization.cbe.cornell.edu/inde
x.php?title=Momentum



Momentum helps overcoming these limitations

Momentum is an extension to the 
algorithm that builds inertia in a 
search direction to overcome local 
minima and oscillation of noisy 
gradients.
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https://optimization.cbe.cornell.edu/inde
x.php?title=Momentum



State-of-the-art: Adaptive Moment Estimation (Adam)

Adam is an adaptive learning 
rate algorithm:

● It uses momentum
● It dynamically adjusts the 

learning rate for each 
individual parameter within 
a model, rather than using a 
single global learning rate
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Vanishing/Exploding gradients
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Remember that the gradients of the loss depend on:

● the derivative of the activation functions

● the derivative of the outputs (i.e. the weights)
Image credits: https://towardsdatascience.com/neural-networks-backpropagation-by-dr-lihi-gur-arie-27be67d8fdce



The gradients can vanish for small derivatives

Some choices of activation 
functions have small derivatives 

This can lead to chain 
multiplication of small numbers!

22Image 1 credits https://dustinstansbury.github.io/theclevermachine/derivation-common-neural-network-activation-functions

https://dustinstansbury.github.io/theclevermachine/derivation-common-neural-network-activation-functions


The gradients can vanish for small derivatives

This can lead to chain 
multiplication of small numbers, 
making the gradients of the initial 
layers effectively 0 and 
preventing learning

Mitigated through initialization 
and change of activation 
functions

23Image 2 credits https://www.jefkine.com/general/2018/05/21/2018-05-21-vanishing-and-exploding-gradient-problems/



The gradients can explode for large weights

The weights can have a norm >>1

Multiplication of large numbers will 
result in exploding gradients for first 
weights

Can be mitigated with regularization 
and clipping of weights
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Image 1 credit 
https://www.superannotate.com/blog/activation-functions-in-neur
al-networks
Image 2 credit
Deep Learning, Goodfellow et al

https://www.superannotate.com/blog/activation-functions-in-neural-networks
https://www.superannotate.com/blog/activation-functions-in-neural-networks


The art of Testing or Regularization
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What if the testing performance 
is poor after training?

It means that we are modelling a 
specific variance of our train 
dataset Epochs

Lo
ss



The art of Testing or Regularization
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What if the testing performance is poor after training?

It means that we are modelling a specific variance of our train 
dataset:

● Use more training data
● Regularization techniques
● Preprocessing of data



Regularization I: Weight decay

We add a term in the loss function 
proportional to the L2-norm of the 
weights

Penalizes large weights

But why do smaller weights 
correspond to simpler models?

27from: Deep Learning, Goodfellow et al



Regularization I: Weight decay

Limits model complexity and 
non-linearity: think of an N-layer 
network as a Nth degree polynomial 
for one input feature when the others 
are fixed. 

y = f_n(W_n * ...f_1(W*x + b)...)

We are reducing the coefficients of 
such a polynomial, hence making it 
less expressive!

28from: Deep Learning, Goodfellow et al



Regularization II: Batch Normalization 
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Increases robustness by 
subtraction of “batch-random” 
mean and variance



Batch Normalization may help in the following case
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Dog, y=1 Not Dog, y=0

Train:



Batch Normalization may help in the following case
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Dog, y=1 Not Dog, y=0 Dog, y=1 Not Dog, y=0

Train: Test:



Batch Normalization may reduce covariance shift
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Train:

Test:

Covariance shift refers to 
changes in the data distribution 
between training and testing, 
affecting model performance. 

Batch normalization helps by 
normalizing input features across 
mini-batches, reducing internal 
covariate shift and stabilizing 
learning, thus improving 
generalization across varying 
distributions.

BatchNorm??



(Data) Regularization III: Normalization of Inputs
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It’s standard practice to 
normalize the input of the 
network to have mean 0 and 
variance 1

This helps to make the 
gradients space more 
regular and speed up 
training

Image credits: https://heytech.tistory.com/



Regularization IV: Dropout

We don’t want to relay on single 
input features, so we spread out 
the information through many 
“sub-networks”

At inference time, all of the 
sub-networks are activated and 
contribute to the output 
(“wisdom of the crowd”)
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Image credit https://towardsdatascience.com/dropout-in-neural-networks-47a162d621d9



Data preprocessing can help with generalization
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Image credits: 
https://learnai1.home.blog/2020/08/15/data-preprocessing-for-
neural-networks/



Now hopefully things work ok! 
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Both the train and test errors are 
reasonable

We can deploy our models in the 
wild!

Epochs

Lo
ss



What if we were to work with images?

In a Feed-forward NN we 
need to flatten the image

For a 18*16 pixels image 
that’s already 288 input 
features

For a Whatsapp image 
~800*800 -> 640k inputs!!

Additionally, no notion of 
locality

37Image credit: https://www.kaggle.com/code/andradaolteanu/convolutional-neural-nets-cnns-explained



Data symmetries matter! Can we account for them?

An eye is an eye, weather or not 
it’s top or bottom, right or left, 
small or big, etc.

How can we build a network that 
is invariant under the shift of 
input features?

38Image credit Tambako The Jaguar, Flickr

https://www.flickr.com/photos/tambako/


Convolutional neural networks
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Image 1 credit
https://wikidocs.net/164365
Image 2 credit 
https://saturncloud.io/blog/a-comprehen
sive-guide-to-convolutional-neural-netw
orks-the-eli5-way/



Convolutional neural networks
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Image  credit 
https://saturncloud.io/blog/a-comprehen
sive-guide-to-convolutional-neural-netw
orks-the-eli5-way/

Essentially

Filter == Learned matrix multiplication 

By going over the image, each filter 
can focus on the local features

We will have filter specializing in 
recognizing the same element over 
multiple training images



Filters in action
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Image 1 credit 
https://www.tomasbeuzen.com/deep-learning-with-pytorch/chapters/chapter5_cnns-pt1.html
Image 2 credit: Lucy Reading-Ikkanda (artist).

By going over the image, each filter 
can specialize on the extraction of 
single features and create an 
higher-level representation

The last part of the network is usually 
a feedforward NN which reasons on 
such a representation

https://www.tomasbeuzen.com/deep-learning-with-pytorch/chapters/chapter5_cnns-pt1.html
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BC/GAIL

Computer Vision
Convolutional NNs (+ResNets)

Natural Lang. Proc.
Recurrent NNs (+LSTMs)

Science
Graph NNs

Speech
Deep Belief Nets (+non-DL)

h         e         l                                    l          o

 Slide from  Lucas Beyer lbeyer@google.com [1] CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png
[2] RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg [3] By NickDiCicco - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=119932650
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The end?
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A new trend in frontier AI/DL: the “bitter lesson”
The biggest lesson that can be read from 70 years of AI research is 
that general methods that leverage computation are ultimately 
the most effective, and by a large margin. The ultimate reason for 
this is Moore's law, or rather its generalization of continued 
exponentially falling cost per unit of computation. [...] 

Seeking an improvement that makes a difference in the shorter 
term, researchers seek to leverage their human knowledge of 
the domain, but the only thing that matters in the long run is the 
leveraging of computation. These two need not run counter to 
each other, but in practice they tend to. Time spent on one is time 
not spent on the other. [...] 

And the human-knowledge approach tends to complicate 
methods in ways that make them less suited to taking advantage of 
general methods leveraging computation. [...]  --- Rich Sutton
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Tw famous examples
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Deep Blue and AlphaGo leveraged 
massive, brute force search strategies 
and then self-play

At the time, this was looked upon with 
dismay by the majority of 
computer-chess/go researchers who 
had pursued methods that leveraged 
human understanding of the special 
structure of chess/go!
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Pre-2017 Deep Learning
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Computer Vision Natural Lang. Proc.

TranslationSpeech

Reinf. Learning

Graphs/Science

 Slide from  Lucas Beyer lbeyer@google.com  Transformer image source: "Attention Is All You Need" paper

Current trends
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So in the end, we’re  back to stacking layers??
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Image credit: Ilya Sutskever 

Not quite!

Everything we’ve seen in this lecture is 
the backbone of scaling Deep(er) 
Networks and making them converge

Human/Physical knowledge is still 
extremely helpful and impactful in the 
short/medium term both for time and 
scale regimes

And most of the times we are dealing 
with finite resources to train/deploy



Conclusions

From a simple set of linear algebra operations, we can 
construct incredible tools called Deep Neural Networks

Basic neurons are not enough! We need to introduce a set of 
algorithms and data preprocessing to make learning easier, 
more stable, and more generalizable 

Different ways of combining neurons can result in optimized 
architectures for handling different data types… but who 
knows what the future holds!
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backup
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We can do the math if needed
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