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What Pisa can teach us about Deep Learning

People tried to make a very tall tower

Turns out it’s not enough to stack one floor on
the other if the foundations are not solid

It’s the same thing with Deep Learning;:

Simply stacking many neurons is not enough!




Outline

A few things you may already know, motivated and trying to
understand why we do them that way

Bias-variance tradeoff
Basic ML recipe
Training and Bias
Testing and Variance
Different architectures



Bias-variance tradeoff

. gitting linear models on a noiseless dataset

Encountered in most statistical = b
raining data
models —— ground truth h”*
1.04 — Dbest fit linear model

We have a bias when the model is
too simple and it is not capturing
the true relationship between xand 5|

y = h*(x)

0.0 1

e.g. a linear model cannot : 1 : r
: 0.0 0.2 0.4 0.6 0.8 1.0
reproduce a quadratic one «

Image credit: https://cs229.stanford.edu/main_notes.pdf



Bias-variance tradeoff

Encountered in most statistical
models

When the model is too expressive,
we risk fitting patterns of our small,
finite training sample -- variance
part of the error

e.g. a bth-degree polynomial will
overfit a small sample from a
quadratic model

1:5

1.0

0.5 1

0.0 1

—— ground truth h™
—— best fit 5-th degree model

test data

0.0

0.2 0.4 0.6 0.8

Image credit: https://cs229.stanford.edu/main_notes.pdf
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Bias-variance tradeoff defines an optimal complexity

Total Error

We must strike the right balance
between a simple, highly biased
model and a complex, variance
sensitive one

Optimum Model Complexity

/ Variance

Error

Deep learning requires careful
tuning and experimentation!

Model Complexity



How do we address this? Basic ML recipe

Training dataset
How well I am modelling the
process producing the
training data

Checks for bias




How do we address this? Basic ML recipe

Training dataset Test dataset
How well I am modelling the How well we generalize to
process producing the previously unseen instances
training data of the data

Checks for bias Checks for variance




How do we address this? Basic ML recipe

Training dataset Test dataset
How well I am modelling the How well we generalize to
process producing the previously unseen instances Deploy!
training data of the data

Checks for bias Checks for variance




Data matters!!

How People Think
ML Works

Running
4 Code

Writing
Code

Image credit: https://www.benchling.com/blog/building-a-strong-data-foundation-to-get-machine-learning-and-automation-right 10



Data matters!!

How People Think The Reality
ML Works

Running Code

Running

Writin
Code / J

Code

Writing
Code Acquiring
Data

Image credit: https://www.benchling.com/blog/building-a-strong-data-foundation-to-get-machine-learning-and-automation-right 1 1



Scale drives deep learning progress!

Assuming:

1. You can fit the training set
pretty well.

2. The training set performance
generalizes pretty well to the
test set.

Performance

Deep Learning

Machine Learning

A 4

Amount of Data
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Fortunately, we have an abundance of data!

10M

Big Data sizes in 2021

100 T objects stored
in S3 up to 2021 (5 MB)

140 M hours/day
of streaming (1 GB)

d

71k B e-mails sent from
2020-10 to 2021-09 (75 KB)

. 500 EB
240k photos/min.
shared in 2021 (total) é’?
2M (=]
e B stk Py “r )
60 GB/s WLCG B real —
transfers in 2018 - rea
5.4k PBYy 1.9k PBYy data expected in 2026
65k photos/min.
3 YouTuhe shared in 2021 LHC real
733 PR (2 MB) data in 2018 800 PBYY 1200 PBly
g e HL-LHC Monte Carlo
) data expected in 2026
300 PBy 263 PBly 252 PBly D G & 240[PBfy d I
160 PBly
720k hours/day
of video uploaded (1 GB) 98.83 M new users 68 PBly 62 PB/Y 30"’ B web pages LHC Monte Carlo
+1.17 M paid subs in 2020 in 2021 (2.15 MB) data in 2018 © Luca Clissa (2022)

(1.5 GB and 500 GB, respectively)

source
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We still need to be careful in how we handle them

Understand your data

Why is it relevant to your problem?

Is some important physical information
missing?

Is the data correctly labelled?

Is the data introducing some unwanted
correlations?

Is the data still relevant to my problem?

14



The art of Training

Underfit
(high bias)

Loss

What can I do if the training
performance is lacking?

N

It means that we are not learning
the underlying statistical model

High training error EpOChS

High test error

Image credit: https://www.javatpoint.com/overfitting-in-machine-learning 1 5



The art of Training

What can I do if the training performance is lacking?

It means that we are not learning the underlying statistical

model:
e Train longer
e Bigger network (more capacity)
e Gradients spaces and learning algorithms
e Vanishing/exploding gradients
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Moving around the loss space can be tricky!

\\\\ \\\\\
RN
RS o

Image credit https://www.cs.umd.edu/~tomg/projects/landscapes
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Basic gradient descent is limited

The naive stochastic/batch gradient
descent has many limitations in
how it navigates complex loss
spaces:

e sensitive to noise in current
sample/batch

e casyto gettrapped in local
minimum

0; =01 — v *gi

- Solution
—— Objective Function

https://optimization.cbe.cornell.edu/inde
x.php?title=Momentum
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Momentum helps overcoming these limitations

- Solution

Momentum is an extension to the '. e
algorithm that builds inertiain a

search direction to overcome local
minima and oscillation of noisy o
gradients. . 2]

bi = p*bi_1+ g -

02 — 92_1 — Y * bz 3 2 A 0 1 2 3
https://optimization.cbe.cornell.edu/inde
x.php?title=Momentum
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State-of-the-art: Adaptive Moment Estimation (Adam)

Optimizer Comparison

Adam is an adaptive learning |
. —e— SDG
I‘ate al.gonthm: 40 + —&— SGD with Momentum

AdaGrad
RMSprop

e [tuses momentum s ~e— Adam
e It dynamically adjusts the
learning rate for each N
individual parameter within
a model, rather than using a ~201
single global learning rate

—-40
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Vanishing/Exploding gradients

ozl
awl11 aW[21
aAll
@ @ - % aA[Z]
az[ll 32[2]
apl b2l

Remember that the gradients of the loss depend on:

e the derivative of the activation functions

e the derivative of the outputs (i.e. the weights)
21

Image credits: https://towardsdatascience.com/neural-networks-backpropagation-by-dr-lihi-gur-arie-27be67d8fdce



The gradients can vanish for small derivatives

1.00 A
0.75 A

Some choices of activation

functions have small derivatives ...

—0.25 A

This can lead to chain

—0.75 A

multiplication of small numbers! _..

Some Common Activation Functions & Their Derivatives

Activation Functions

1.01

0.8

0.6

0.4

0.2 4

0.0

—0.2 1

—0.44

Derivatives
= gllinear(z)
— glsigmold(z)
— g/tanh(z)
4 -2 0 2 4

Image 1 credits https://dustinstansbury.github.io/theclevermachine/derivation-common-neural-network-activation-functions
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The gradients can vanish for small derivatives

2.5

This can lead to chain kna ReLU

multiplication of small numbers, 2 \ | |
making the gradients of the initial e | |

15

layers effectively 0 and M

preventing learning w !

Mitigated through initialization gl

and change of activation

funCtionS 00 2(;0 4(.)0 6(;0 8(‘)0 10.00 12.00 14‘00 ‘16IOO 18‘00 2000

Iteration

Image 2 credits https://www.jefkine.com/general/2018/05/21/2018-05-21-vanishing-and-exploding-gradient-problems/ 23



The gradients can explode for large weights

The weights can have a norm >>1

Vanishing Gradient Exploding Gradient
Multiplication of large numbers will
result in exploding gradients for first £ £
weights 5 5
Can be mitigated with regularization e | \
and Clipping Of Weights Input Layer1 LLoyerZ Layer3  Output Input Layer1 Il-_uyerZ Layer3  Output
ayer ayer

Image 1 credit
https://www.superannotate.com/blog/activation-functions-in-neur
al-networks

Image 2 credit

Deep Learning, Goodfellow et al



https://www.google.com/url?q=https://www.superannotate.com/blog/activation-functions-in-neural-networks&sa=D&source=editors&ust=1728918182946800&usg=AOvVaw3wVP6clKfOIKIWERKrLfRX
https://www.google.com/url?q=https://www.superannotate.com/blog/activation-functions-in-neural-networks&sa=D&source=editors&ust=1728918182946936&usg=AOvVaw0mHZ7IUnA4VodZfSYO-hMi

The art of Testing or Regularization

What if the testing performance
Is poor after training?

It means that we are modelling a
specific variance of our train
dataset

Overfit

(high variance)

Low training error
High test error

Loss

Epochs
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The art of Testing or Regularization

What if the testing performance is poor after training?

It means that we are modelling a specific variance of our train
dataset:

e Use more training data
e Regularization techniques
e Preprocessing of data

26



Regularization I. Weight decay

We add a term in the loss function

proportional to the L2-norm of the
weights

Penalizes large weights

But why do smaller weights
correspond to simpler models?

Lnew(w) — Lorigz’nal('w) + )\wT'w

Underfitting Appropriate weight decay Overfitting
(Excessive \) (Medium ) (A—0)
e®
—— =
> ) >
9 ®

) To )

from: Deep Learning, Goodfellow etal 57



Regularization I. Weight decay

Limits model complexity and
non-linearity: think of an N-layer

Degree
network as a Nth degree polynomial /g
for one input feature when the others N o 9
are fixed. f(z) = ax"+- - - +asx” + a1z + ag
\
y=f n(W_n*..f 1(W*x +b)...) Leading Coefficient

We are reducing the coefficients of
such a polynomial, hence making it
less expressive!

from: Deep Learning, Goodfellow etal  og



Regularization II: Batch Normalization

Batch Norm

A

Channels C

>
Mini-Batch Samples N

Increases robustness by
subtraction of “batch-random”
mean and variance

Input: Values of x over a mini-batch: B = {xl,,,m};
Parameters to be learned: ~, 3

Output: {y; = BN, 5(x;)}

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift
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Batch Normalization may help in the following case

Train:

Not Dog, y=0

30



Batch Normalization may help in the following case

Train: Test:

Not Dog, y=0
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Batch Normalization may reduce covariance shift

Train:

Covariance shift refers to
changes in the data distribution
between training and testing,
affecting model performance.

Batch normalization helps by
normalizing input features across
mini-batches, reducing internal
covariate shift and stabilizing
learning, thus improving
generalization across varying
distributions.




(Data) Regularization III: Normalization of Inputs

It’s standard practice to
normalize the input of the
network to have mean 0 and
variance 1

This helps to make the
gradients space more
regular and speed up
training

l”I / l‘.l
@
N

10

Gradient of larger parameter
dominates the update

Imag

(@)
2,

Both parameters can be
updated in equal proportions

e credits: https://heytech.tistory.com/
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Regularization IV: Dropout

We don’t want to relay on single
input features, so we spread out
the information through many
“sub-networks”

At inference time, all of the
sub-networks are activated and
contribute to the output

(“wisdom of the crowd”) () Standard Neural Net

Image credit https://towardsdatascience

(b) After applying dropout.

.com/dropout-in-neural-networks-47a162d621d9
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Data preprocessing can help with generalization

Image credits:
https://learnai1.home.blog/2020/08/15/data-preprocess
neural-networks/

ing-for-

35



Now hopefully things work ok!

Both the train and test errors are
reasonable

We can deploy our models in the
wild!

Optimum

Low training error
Low test error

Loss

Epochs
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What if we were to work with images?

FNNs: No Proximity Notion

In a Feed-forward NN we

need to flatten the image e @)
For a 18*16 pixels image il livee 3 .
that’s already 288 input 3
features . O rmine
For a Whatsapp image .’ 3
~800*800 -> 640k inputs!! el =
Pixel 287 Q
Additionally, no notion of otaes' @

locality

Image credit: https://www.kaggle.com/code/andradaolteanu/convolutional-neural-nets-cnns-explained 37



Data symmetries matter! Can we account for them?

An eye is an eye, weather or not
it’s top or bottom, right or left,
small or big, etc.

How can we build a network that
Is invariant under the shift of
input features?

Image credit Tambako The Jaguar, Flickr
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Convolutional neural networks

10110 0 1101
O|l1]11]0 1 > ol1]1 *
110(17]0 0 1lol1
1fof1/1 0 Image patch
ol1]11lo0 1 (Local receptive field)
1101 11]0 0

Input

2|3

516

819

Kernel
(filter)

<

31

Output

height

Image 1 credit
https://wikidocs.net/164365

Image 2 credit
https://saturncloud.io/blog/a-comprehen
sive-guide-to-convolutional-neural-netw
orks-the-eli5-way/ 39



Convolutional neural networks

Essentially
Filter == Learned matrix multiplication

By going over the image, each filter
can focus on the local features

We will have filter specializing in
recognizing the same element over
multiple training images

Image credit
https://saturncloud.io/blog/a-comprehen
sive-guide-to-convolutional-neural-netw 40
orks-the-eli5-way/



Filters in action

By going over the image, each filter
can specialize on the extraction of
single features and create an
higher-level representation

The last part of the network is usually
a feedforward NN which reasons on
such a representation

Image 1 credit

https://www.tomasbeuzen.com/deep-learning-with-pytorch/chapters/chapter5_cnns-pt1.html
Image 2 credit: Lucy Reading-lkkanda (artist).

Filter 1

112
31|-1
Filter 2
112
3 |-1
Filter 3
112
3 |-

Multiple hidden layers
process hierarchical features

layer

=7y
773

XN
Z 3 D !/
entify
<N combinations

Identify .
light/dark \ S or features
pixel value Identify Identify Identify
\ edges combinations features /
~—— of edges

.t HEF TH® =ES HER
‘F.u B0HE Bl RER HEIH

Tom

Not Tom
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Computer Vision Natural Lang. Proc.

Convolutional NNs (+ResNets) Recurrent NNs (+LSTMs)

Feature maps hy T

l

|

.
*.. Output

»

hq
T “ 2] T

'_‘.%:: ..... ' [

] Convolutions Subsampling Convolutions Subsampling  Fully connected

Speech Science RL

Deep Belief Nets (+non-DL) Graph NNs BC/GAIL

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories 7 ~ 7, initial policy and discriminator parameters 6, wo
2: fori=0,1,2,... do

3:  Sample trajectories 7; ~ 7g,

4:  Update the discriminator parameters from w; to w;, with the gradient

B [Va log(Du (5, 0))] + Er, [Vis log(1 = Dy, 0))]

Specifically, take a KL-constrained natural gradient step with
E-, [Vologmo(als)Q(s.a)] = AV H(m),
where Q(3,a) = E,, [log(Du,,, (5,a)) |0 = 5,a0 = a]

an

5:  Take a policy step from 6; to 6; 1, using the TRPO rule with cost function log(D., ., (s, a)).

(13)

[3] 6: end for

Slide from Lucas Beyer |beyer@gooale.com [1] CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png
[2] RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg [3] By NickDiCicco - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=119932650
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The end?
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A new trend in frontier AI/DL: the “bitter lesson”

The biggest lesson that can be read from 70 years of Al research is
that general methods that leverage computation are ultimately
the most effective, and by a large margin. The ultimate reason for
this is Moore's law, or rather its generalization of continued
exponentially falling cost per unit of computation. [...]

Seeking an improvement that makes a difference in the shorter
term, researchers seek to leverage their human knowledge of
the domain, but the only thing that matters in the long run is the
leveraging of computation. These two need not run counter to
each other, but in practice they tend to. Time spent on one is time
not spent on the other. [...]

And the human-knowledge approach tends to complicate
methods in ways that make them less suited to taking advantage of
general methods leveraging computation. [...] --- Rich Sutton
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Tw famous examples

Deep Blue and AlphaGo leveraged
massive, brute force search strategies
and then self-play

At the time, this was looked upon with
dismay by the majority of
computer-chess/go researchers who
had pursued methods that leveraged
human understanding of the special
structure of chess/go!

| @ACM Chess Challengelé?
Garry Kasparov g

=
o . 00:01:00
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Computer Vision

Convolutional NNs (+ResNets)

Feature maps

A 4

ee?
) 'ﬂs‘gience

) Graph NNs

Speech

c
Deep Belief Nets (JR)X—DL

T o |

[3]

Slide from Lucas Beyer |beyer@gooale.com [1] CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png

[1] Convolutions Subsampling Convolutions Subsampling  Fully connected » é

Natural Lang. Proc.

Recurrent NNs (+LSTMs)

A 4

RL

BC/GAIL

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories 7 ~ 7, initial policy and discriminator parameters 6, wo
2: fori=0,1,2,... do

3:  Sample trajectories 7; ~ 7g,

4:  Update the discriminator parameters from w; to w;, with the gradient

E., [V log(Du(s,0))] + B, [V log(1 — Dy(s,a))]

an

5:  Take a policy step from 6; to 6; 1, using the TRPO rule with cost function log(D., ., (s, a)).

Specifically, take a KL-constrained natural gradient step with
E,, [Volog mo(als)Q(s,a)] — AVeH (mp),
where Q(5,@) = Ex, [log(Du,., (s, a)) | so = 5,a0 = a]

6: end for

(13)

[2] RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg [3] By NickDiCicco - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=119932650
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Computer Vision

Natural Lang. Proc.

Reinf. Learning

Output
Output
Output o Probabiities
Probabiities Probabiities
Sohmax
Sohmax SoRmax
Thear Thear Thear
733 & Norm
733 & Norm 733 & Norm
Forward Forward Forward
733 & Nom
733 & Nom 733 & Norm e
B — Wl-Head Wl-Head
e Wl-Head — At e Feed Attention
= — Fovard Nx Foward Nx
Fovard Nx
GG Nom
GG Nom . GG Nom . e
Nx AJd & Norm
GG Nom e
Wt Head Mult-Head Wt Head Mut-Head
Wt Head MultHead o Attention Attention
Attention Attention Attention Attontio
Positional Positional Postional Postiors
Encoding Encoding Encoding ncoding
o T Cutput T Cutput
5 o ! mboddr Embedding Embedding
Embedding Embedding Embedding Embeddng
' Inputs Outputs
Inputs Outputs Inputs N‘?lu(r‘;i ) (shifted right)
(shifted right) shifted rg!

x

Speech Graphs/Science

Slide from

c\“ﬁ“slation

Output
Output
Output e Probabities
Probabities Probabities
o
o o
Toear
Toear 3
A Nom
A Nom A Nom
Feed
Feed Feed Forvard
n Forvard
oward
A Nom
A Nom 1 EXTR I Nom =
I Nom SR Wit Head Ak Hea
Vit Feod = Al o Feed Attenton
Feed Attention ey L Nx Forward Nx
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A Nom
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Positi siiona
Positonal Positional ositonal Poskicrel Encoding Encoding
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Encoding Encoding utput
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Lucas Beyer |beyer@google.com Transformer image source: "Attention Is All You Need" paper

uts
(shifted right)

uts
(shifted right)
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So in the end, we’re back to stacking layers??

{ STATISTICAL LEARNING \

Not quite!

Everything we’ve seen in this lecture is
the backbone of scaling Deep(er)
Networks and making them converge

Human/Physical knowledge is still —
extremely helpful and impactful in the 8 |N§;’i";ms \

short/medium term both for time and /’
scale regimes V
e )

LAYERS

/N

Image credit: Ilya Sutskever

STACK
MORE
LAYERS

M < >

And most of the times we are dealing
with finite resources to train/deploy



Conclusions

From a simple set of linear algebra operations, we can
construct incredible tools called Deep Neural Networks

Basic neurons are not enough! We need to introduce a set of
algorithms and data preprocessing to make learning easier,
more stable, and more generalizable

Different ways of combining neurons can result in optimized
architectures for handling different data types... but who
knows what the future holds!
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We can do the

math if needed

MSE2£E[(y—f)’] =E [’ —2yf+f] E [y ]—2E[yf]+E[f2]

Ely’] =E[(f+¢)]
= E[f*] + 2E[f¢] + E[¢]
= f* + 2fE[¢| + E[¢?]
= fP42f-0+0°

E[yf] =E[(f+e)f]
= E[ff] +E[ef]
= E[ff] + E[¢] E[f]
= fE[f]

by linearity of E
since f does not depend on the data
since ¢ has zero mean and variance o

MSE = f? + ¢ — 2fE|f] + Var|f] + E[f]?
by linearity of E = (f - E[f]) +0* + Var [f]
since f and € are independent — Bias| f] 4 % 4+ Var [ f]
since Ele] =0

E [fz] = Var(f) + E[f]>  since Var[X] 2 E [(X = E[X])2] = E[X?| — E[X]? for any random variable X
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