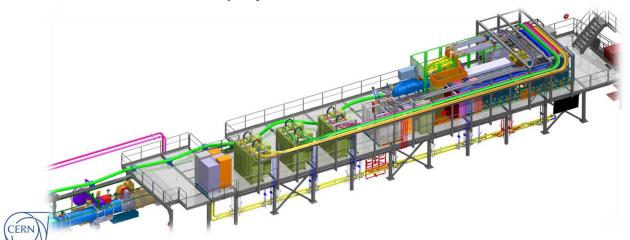


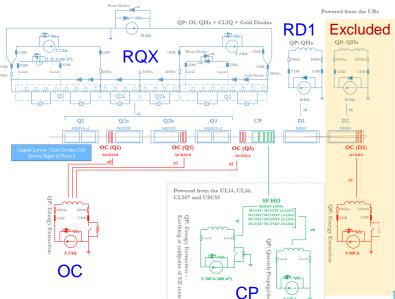
HL-LHC IT String Day IV Warm Powering System

H. Thiesen and E. Coulot – WP6B/SY-EPC With the contribution of WP6B team and SY-EPC group

HL-LHC IT String Day IV - 30/7-018 - Kjell Johnsen Auditorium - 27 Sept 2024


Outline

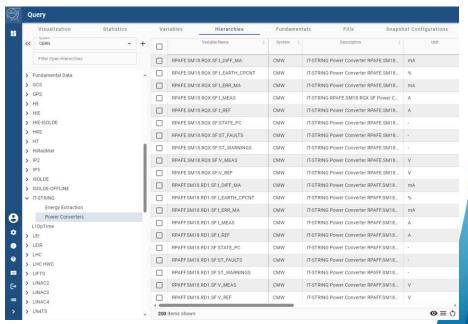
- HL-LHC String The prototype of the IP sides
- Installation phase
- IST and SCT
- Next Steps
- Conclusion



- HL-LHC String can be considered as the prototype of the IP sides (the preseries will be the first IP side) and an unique opportunity to validate the different phases of LS3 (UR)
 - This will be the first opportunity to test all the equipment together
 - Opportunity to validate both hardware and software interfaces, identify issues and solve them before full deployment.

- HL-LHC String circuits
 - Identical to the machine w/o RD2 and its correctors
 - RD2 can be considered as a copy-paste of RD1
 - 600A correctors can be considered as a copy-pate of 2kA correctors

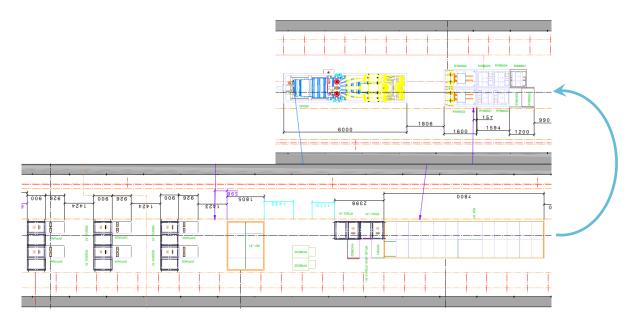
- HL-LHC String phases
 - Same phases as the machine
 - Installation
 - IST SCT
 - Commissioning
 - Operation


■ SM18_HL-LHC_WP16_WORKINGplanningSTRING		14/08/2020	01/07/2027			
☐ HL-LHC String	1,683d	14/08/2020	01/07/2027		14/08/2020	01/07/2027
□ ☐ Infrastructure	1,096d	14/08/2020	07/02/2025		14/08/2020	16/01/2025
	743d	15/09/2021	25/09/2024		15/09/2021	23/09/2024
□ 🔄 SY-EPC-6B	244d	01/08/2022	28/07/2023	SY-EPC	01/08/2022	28/07/2023
CDB 18kA rack	2w	21/10/2022	03/11/2022	SY-EPC	21/10/2022	03/11/2022
CDB 14kA rack	2w	21/10/2022	03/11/2022	SY-EPC	21/10/2022	03/11/2022
CDB 2kA racks	2w	21/10/2022	03/11/2022	SY-EPC	21/10/2022	03/11/2022
CDB control rack x2	1w	24/07/2023	28/07/2023	SY-EPC	24/07/2023	28/07/2023
CDB 0,6 kA Rack	1d	24/07/2023	24/07/2023	SY-EPC	24/07/2023	24/07/2023
18kA PC rack	4w	06/03/2023	31/03/2023	SY-EPC	06/03/2023	31/03/2023
0,06kA PC rack	4w	06/03/2023	31/03/2023	SY-EPC	06/03/2023	31/03/2023
DCCT Racks	4w	06/03/2023	31/03/2023	SY-EPC	06/03/2023	31/03/2023
14kA PC rack	4w	06/03/2023	31/03/2023	SY-EPC	06/03/2023	31/03/2023
2kA PC racks	8.2w	06/03/2023	04/05/2023	SY-EPC	06/03/2023	04/05/2023
0,2kA PC rack (0,6 kA baseline)	4w	06/03/2023	31/03/2023	SY-EPC	06/03/2023	31/03/2023
0,12kA PC racks	4w	06/03/2023	31/03/2023	SY-EPC	06/03/2023	31/03/2023
Gateway-FGC3 rack	4w	24/02/2023	23/03/2023	SY-EPC	24/02/2023	23/03/2023
RPAFE: Crowbar installation (WP6B)	1w	01/10/2024	07/10/2024	SY-EPC	01/10/2024	07/10/2024
SY-EPC electronics into rack installation in-situ	21.8w	30/06/2023	30/11/2023	SY-EPC	30/06/2023	30/11/2023
☐ DC connections	415.5d	20/06/2022	28/02/2024	EN-EL	20/06/2022	28/02/2024
Final WCC lugs connection	3w	01/11/2023	21/11/2023	SY-EPC	01/11/2023	21/11/2023
Busbar	1.5w	19/02/2024	28/02/2024	SY-EPC	19/02/2024	28/02/2024
□	772.5d	01/12/2023	05/02/2027		01/12/2023	21/01/2027
☐ Tests before cooling & cooling	449.5d	01/12/2023	06/10/2025		01/12/2023	19/09/2025
☐ Protection Interface and Short Circuit Tests	65d	01/12/2023	14/03/2024		01/12/2023	14/03/2024
Individual system tests (PCs, CDBs and busbars)	2w	01/12/2023	14/12/2023	SY-EPC	01/12/2023	14/12/2023
Short-circuit tests / LHC-XMS-OP-0003	11w	15/12/2023	14/03/2024	TE-MPE, EN-CV, EN-EL, SY-EPC	15/12/2023	14/03/2024
PCs, CDBs, Busbars and associated equipment dismatlin	0d	01/07/2027	01/07/2027	SY-EPC	01/07/2027	01/07/2027

- New hardware in LHC machine
 - New power converters should be fully compatible with the LHC machine: software, BD and tool.

HL-LHC String integration has be done to be an image of the machine

UR integration



HL-LHC String integration has be done to be an image of ty 1424 rotation of 180° of the CDB and DFHX

HL-LHC String integration has be done to be an image of the machine

Warm Powering systems
Integration

Hardware Installation (visible part)

CDBs & WCBB

- 2 x 18kA
- 8 x 2kA
- 2 x 600A

CP PCs:

1 x 200A

• 8 x 120A (not R2E)

RCBX (OC) PCs:

• 6 x 2kA

RD1 PC:

Main: 14kA

MEAS syst:

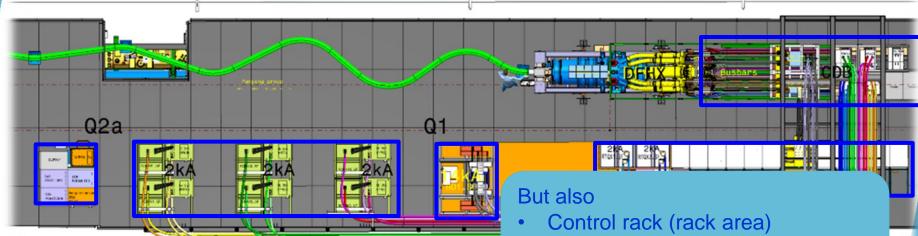
• RQX: 18kA

RD1: 14kA

RQX PCs

Main: 18kA

• TRIM: 2 x 2kA & 35A



Hardware Installation (visible part)

CDBs & WCBB

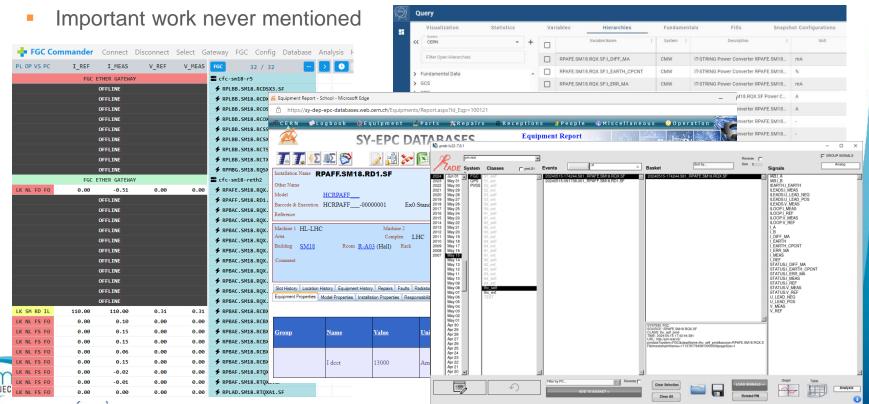
- 2 x 18kA
- 8 x 2kA
- 2 x 600A

CP PCs:

- 1 x 200A
- 8 x 120A (not R2E)

RCBX (OC) PCs:

6 x 2kA


RD1 PC

- Main:
- Control networks
- Signal cables between equipment

Software Configuration (not visible part)

- Schedule
 - HL-LHC String: 1.5 year of installation
 - First equipment has been installed in October 2022 (CDB)
 - Last equipment has been installed in March 2024 (WCBB)
 - LHC machine: 2 months per IP side
 - Why this difference?
 - HL-LHC String use machine equipment and it is ahead of the machine
 - Design was not finalized when the production started
 - PCs and CDBs have been installed when they were needed (partial installation)
 - CBD racks have been installed for WCC installation w/o control part
 - PCs have been installed in different campaign
 - 1st SCT tests have been done w/o WCBB
 - Some equipment is still missing: 18kA crowbar, DCCT, etc...

- Schedule
 - Why this difference?
 - Some interfaces were not defined before installation (time consuming)

Water Cooled Cabled

Monitoring Current Sensors

PC Connections

Schedule

- What was the impact?
 - More time and resources than planned (several installation campaigns).
 - Challenging to plan the activities effectively. The installation team has spent more time in transit than working in the field.
- Lessons learned
 - Detailed integration is essential for a brief installation
 - Time should be estimated and added for contingencies
 - The installation of the first IP side will take more time that the other 3
 - Difference between HL-LHC String and IP sides
 - Validate the modifications implemented in the String

IST and SCT

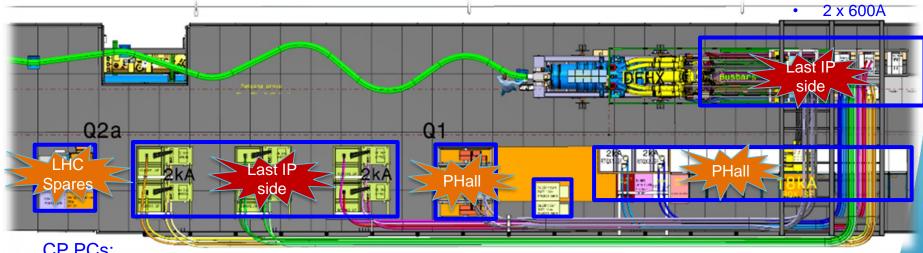
- IST and SCT
 - What was planned?
 - Two different phases with first IST and after SCT
 - The ideal scenario when everything works well
 - Equipment fully tested before installation.
 - No issues or minor issues.
 - What was done?
 - IST and SCT have been done in parallel
 - Part of reception tests has been done in the HL-LHC String
 - Validation and reception tests of CDB control have been done in the HL-LHC String
 - Validation of the WCBB design has been done in the HL-LHC String
 - First time that the 18kA power converter reached nominal current with 10 subPCs in parallel

Next Step

- Finalize the installation
 - Reinstall power modules in 14kA and 18kA power converters
 - Currently, only one set of modules is available, share between SM18 and PHall
 - The power modules have been removed and installed in EPC test area for performance validation of the 14kA and 18kA power converters
 - Installation of missing items
 - 18kA crowbar, not needed for the 1st phase (IST and SCT)
 - Second DCCT for 18kA, 14kA and 2kA PCs
 - Etc...
 - Modify the HL-LHC String to be as close as possible of the machine
 - Remove one MEAS Rack (done)
 - Modify AC distribution to improve the safety procedure (done)
 - Update the WCBB&WCP to be compliant with the specification (insulation)

Next Step

- Finalize the installation
 - Schedule
 - Installation/Modification will be done in an unique campaign
 - The campaign is planned on May and June 2025
 - 3 weeks of IST/SCT are needed to requalify the power converter and to validate the modifications



Next Step

- HL-LHC String De-installation
 - All HL-LHC String equipment is needed for the machine

CDBs & WCBB 2 x 18kA

String dismantlement should be done >6 months before the last IP side. 8 x 2kA

CP PCs:

1 x 200A

8 x 120A (not R2E)

RCBX (OC) PCs:

6 x 2kA

RD1 PC:

Main: 14kA

MEAS syst:

RQX: 18kA

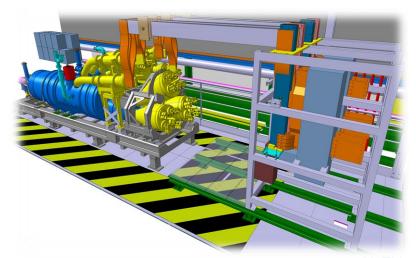
RD1: 14kA

RQX PCs

Main: 18kA

TRIM: 2 x 2kA & 35A

- HL-LHC String is done with machine equipment
 - Huge constraints (time and resources) for the teams
 - Manufacturing and Installation of the HL-LHC (String) equipment have been done in parallel with the design and development phases
 - Equipment should be updated before the installation of the last IP side
 - Each issues identified during HL-LHC String operation need to modify the equipment in the UR if it is possible



- Installation and commissioning of the new facility are as the Rubik's Cube
 - They seem easy but they are complex
 - Training is crucial
 - HL-LHC String can be considered as a prototype where we discovers all the issues that we didn't imagine
 - 1st IP can be considered as a pre-series with new issues dues to the difference between HL-LHC String and the LHC
 - The 3 last IP sides will be normally more easy

- The main challenge of the UR installation will be the installation of the WCBBs and DFHX/Ms
 - Several different interfaces in the same small area
 - WCBB and ACC
 - Cryogenic and Instrumentation
 - etc...

- Main challenges and results of the powering test?
 - Validation of the WCBBs with the DFHX and final design of the WCPs
 - Validation of the RQX crowbar
 - Validation of the decoupled current loops for the RQX circuit
 - Evaluate the impact of the Flux Jumps / Voltage spikes on the control and the accuracy

String Facility is an iceberg

Thank you

