

Electrical Quality Assurance for the IT String (WP7/TE-MPE)

Mateusz Bednarek and Greg West on behalf of the ELQA team

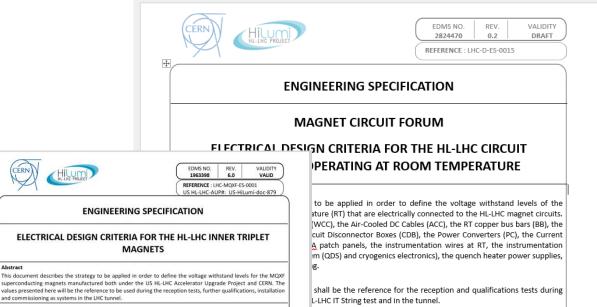
Outline:

- Documentation and procedures
- Equipment, software
- Feedback of the experience of ELQA in the individual magnets, S.C. Link and other circuit components
- Status of the collaboration

ELQA in the IT String - objective

- Validate the superconducting circuits for cool-down and powering
- Acquire working experience on HL-LHC circuits
- Acquire reference values for HL-LHC circuits and components
- Validate ELQA test procedures, ELQA test equipment and software
- Ensure that the qualification is as tight as possible and that there is no negative impact on HL circuits
- > The ELQA in the IT String should be as similar to the final ELQA in the tunnel as possible

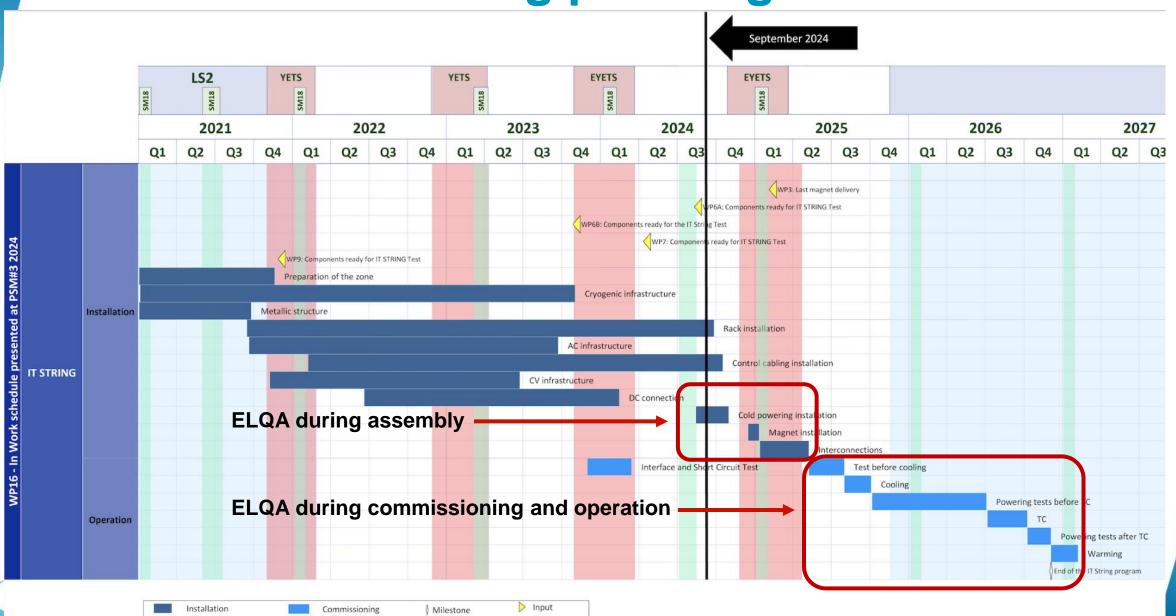
HL-LHC ELQA Documentation



- For each magnet (and associated cold/warm powering component) an EDC document has been created:
 - Magnets
 - Superconducting Link System
 - D1-DFX, D2-DFM Interconnection modules and Superconducting busbars in HL-LHC Line N1 and Line N2
 - Circuit components operating at room temperature
- Necessary voltage withstand and test levels at various conditions and at various manufacturing stages are defined
 - Documents can be found on EDMS here: https://edms.cern.ch/project/CERN-0000229487
- ELQA needs to perform a set of specific tests for each asset at different conditions, called a qualification set
 - The test program is described in: https://edms.cern.ch/document/2746933
- Each of these qualification sets require their own specific test procedure.
 - Documents can be found on EDMS here: https://edms.cern.ch/project/CERN-0000229486

Qualification Sets Include:

- SLC
- MIC (C,W,D)
- ITIV
- ITIC
- IT-PAQ
- TP4 (A,B,C,D,E)



IT String planning

ELQA during the IT String assembly

<u> </u>					
	SLC	MIC-W	IT-PAQ	ITIV	ITIC
HVQ	~	<	>	>	>
TFM	~	<	>	>	
IRC	~	>	>	~	
ICC	~	~	>	>	
TDR	~	>	>		>
coc	~			>	>
QHR		>			
DVC			~		
TSQ	~		~		
·					

HVQ – High Voltage Qualification

TFM – Transfer Function Measurement

IRC – Instrumentation Resistance Check

ICC – Instrumentation Configuration Check

TDR – Time Domain Reflectometry

COC – Continuity of Conductor check

QHR – Quench Heater Resistance measurement

DVC – Diode opening Voltage Check

TSQ – Temperature Sensor Qualification

Done already on several IT String assemblies!

SLC – Superconducting Link Check

MIC-W – Magnet Instrumentation Check

IT-PAQ – Inner Triplet Partial Assembly Qualification

ITIV – Inner Triplet Interconnection Verification

ITIC – Inner Triplet Instrumentation Check

ELQA during the IT String commissioning

	TP4-A	MIC-W	TP4-B	TP4-C	TP4-D +MIC-D	MIC-C	ТР4-Е	
	At	At	After	During cool-down/	At 80 K	At cold	At cold	
	warm	warm	flushing	warm-up	AL OU K	At cold	At cold	
HVQ		>	>	>	optional	>	~	
TFM	~	>			optional	>	~	
IRC	>	>			optional	>	~	
ICC	~	>			optional	>	~	
TDR		>			optional	>		
QHR		<			optional	>		
DVC		~				>		
TSQ	~						~	

TP4-A – Test Procedure 4 type A

MIC-W – Magnet Instrumentation Check at warm

TP4-B – Test Procedure 4 type B

TP4-C – Test Procedure 4 type C

TP4-D – Test Procedure 4 type D

MIC-D – Magnet Instrumentation Check at 80 K

MIC-C – Magnet Instrumentation Check at cold

TP4-E – Test Procedure 4 type E

HVQ - High Voltage Qualification

TFM – Transfer Function Measurement

IRC – Instrumentation Resistance Check

ICC – Instrumentation Configuration Check

TDR – Time Domain Reflectometry

QHR – Quench Heater Resistance measurement

DVC - Diode opening Voltage Check

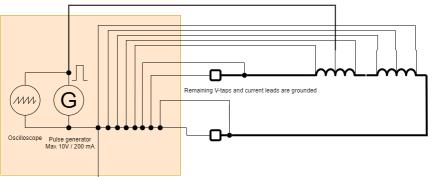
TSQ - Temperature Sensor Qualification

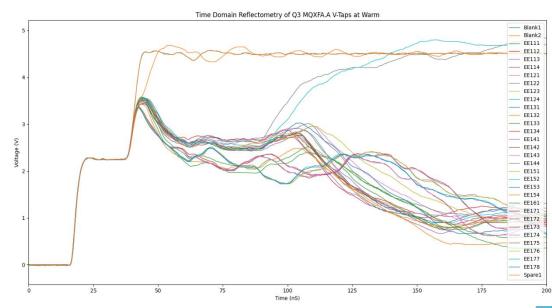
ELQA during the IT String commissioningand operation

Qualification	At warm	At warm after flushing	Cool-down 300 K to 80 K	At 80 K	Cool-down 80 K to 1.9 (4.5) K	At cold	At cold after powering	Warm-up	At warm	Cool-down	At cold	At cold after powering	Warm-up	At 80 K	Warm-up 80 K to 300 K	At warm
TP4-A	~								~							~
MIC-W		~							~							~
ТР4-В		~							~							~
TP4-C			~		~			~		~			~		~	
TP4-D				~										~		
MIC-D				~										~		
MIC-C						~	~				~	~				
TP4-E						~	~				~	~				

Status of test systems

- Automated tests (test applications, database, measurement sequences and validations) implemented and ready for
 - All IT String magnets
 - S.C. link conductors
 - Instrumentation cables
- Adaptor cables ready to match all connectors in the IT String
- First magnets and the S.C. link tested on the test benches
 - @warm and @cold
 - More than 20500 measurements and even more validations so far!
- Interconnection verification needs to be finalised




Development of new tools (TDR)

Electrical Quality Assurance

- Time Domain Reflectometry (TDR) is a very useful technique for probing cable impedance changes along the cable, in particular to localise open circuits or short circuits
 - Reference signal of a healthy circuit is needed
- For HL-LHC and IT String ELQA is going to systematically acquire these reference signals in multiple configurations on most of instrumentation wires
- A single channel version is operational already
- A dedicated multichannel device is being developed (in collaboration with IFJ PAN)
 - Prototype PCB is being launched for production
 - Working prototype expected before the end of the year (to be used in the IT String)
 - Final two units planned for mid-2025

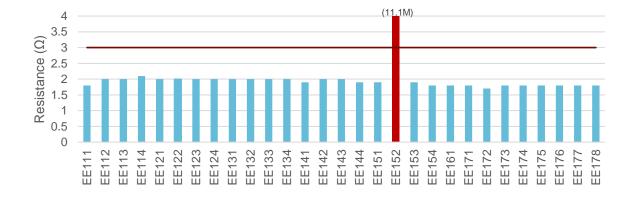
Manpower for the ELQA in the IT String

- Particular attention to be put on verification of ELQA methods, procedures, hardware and software
- Personnel will be provided by TE-MPE-PE
- Support of ELQA experts from IFJ PAN in key IT String time slots
 - Dedicated Addendum to existing Collaboration Agreement is in place
 - Preliminary dates:
 - 3 weeks in Nov./Dec. 2024
 - 4 weeks in Jan./Feb. 2025
 - 7 weeks in Jun./Jul. 2025

Electrical Quality Assurance

Examples of Assets Tested So Far

Q2B, Q2A, Q2B (HCQQXF_SB01 CR000001, HCQQXF SB014-CR000001, HCQQXF QQXF_SB014-CR000002)


SCL (HCDSHX_002-CR000001)

Experience with ELQA on HL magnets and S.C. link

- So far tested 6 magnets and one complete S.C. link assembly on test benches in SM18 (typically twice at warm and once at cold)
 - Smooth test execution
 - Minor issues related to a couple of lost V-taps identified
 - Reference data for all test types acquired
 - Fine-tuned the software, hardware, test content, validations and detection thresholds
- Performed fault localisation on a couple of magnets
 - Earth fault on a busbar in Q2b magnet
 - Insulation failure on a quench heater

Experience with ELQA on IT String components

- Several components tested:
 - Warm diode assembly
 - CDBs
 - Warm water-cooled busbars
 - Instrumentation cable samples
 - QDS patch panel prototype

WARNING!

Warm water cooled busbars

- Insulation was found insufficient wrt the EDC requirement
- Dedicated tests were repeated such that the insulation of each water-cooled plate could be assessed
- The insulation was found to breakdown in 5 out of 16 plates
- Corrective and mitigation actions are undertaken
- Detailed report: https://edms.cern.ch/document/3092105/
- Presentation: https://indico.cern.ch/event/1448991/

Instrumentation cable samples

Electrical Quality Assurance

- 22 cables
- 518 wires to test (HV tested at least 4 times each)
- Insulation successfully tested at 1 kV, 2.7 kV and 3 kV on all wires
- Selected wires successfully tested up to 12 kV
- Component selection is sufficient for IT String operation, no degradation expected during the final 2.7 kV test in the IT String
- Continuity errors in 9 out of 22 cables
- Discussions with EN-EL took place and resulted in a complete requalification of the IT String cables
- It is planned that ELQA will retest the IT String instrumentation cables
- Detailed report: https://edms.cern.ch/document/3121209
- Presentation: <u>https://indico.cern.ch/event/1448991/</u>

Upcoming Priorities

Following assets will soon be tested:

- Corrector Package assembly
- Q3 at warm
- Instrumentation cables in the IT String
- S.C. link in the IT String
- Re-validation of warm water-cooled busbars
- Tests of IT String magnets after installation in the IT String

Summary

- ELQA is ready to test IT String components and circuits as soon as they become available
- Documentation and most of the required procedures for HL-LHC are available, to be finalised with the help of experience gained in the IT String
- Software, hardware and cables are ready
- Development of the dedicated multichannel TDR will soon be at the fully functional prototype stage
- Several HL-LHC and IT String assets have been tested
 - Experience with the new types of equipment was acquired and translates into optimisations of the ELQA HL-LHC systems
 - Reference data was acquired and will serve for future tests
 - Several early warnings were identified and help improve HL-LHC components
- Additional support of ELQA experts from IFJ PAN is planned in key time slots

