Basics of Quantum Computing

Ema Puljak

"If you think you understand quantum mechanics, you don't understand quantum mechanics."

Richard Feynman

MERFERENCE

 $|\text{qubit}\rangle = C_0 | \circ \rangle + C_1 | \circ \rangle$

 $|qubit\rangle = C_0 | \circ \rangle + C_1 | \circ \rangle$

CLASSIC BIT QUANTUM BIT

 $|\text{qubit}\rangle = C_0 | \circ \rangle + C_1 | \circ \rangle$

CLASSIC BIT QUANTUM BIT

PROBABILITY DISTRIBUTION

ENTANGLEMENT

Information encoded in joint state

2 entangled qubits

12

CORRELATION

Information encoded in joint state

2 entangled qubits

ENTANGLEMENT

Qubits	2	3	10	16	20	30	35	100	280
Classical bits required to represent an entangled state	512 bits	1,024 bits	16 kilobytes	<u>1</u> megabyte	17 megabytes	17 gigabytes	550 gigabytes	more than all the atoms on the planet Earth	more than all the atoms in the universe

quantamagazine.org

Exponential power of quantum computers

NTERFERENCE

wave function = ψ

Bra-Ket
$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\mathbf{C}_{\mathbf{0}} = a + bi$$
 $\mathbf{C}_{\mathbf{1}} = c + di$ $\mathbf{C} = \begin{bmatrix} C_0 \\ C_1 \end{bmatrix}$

$$|\Psi\rangle = C_0 | \circ \rangle + C_1 | \rangle$$

$$C_0 = a + bi$$
 $C_1 = c + di$ $C = \begin{bmatrix} C_0 \\ C_1 \end{bmatrix} \longrightarrow 4 \text{ parameters}$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

BORN RULE

$$|\mathbf{P}_0| \circ \rangle = |\mathbf{C}_0|^2 \quad \mathbf{P}_1| \circ \rangle = |\mathbf{C}_1|^2$$

$$\mathbf{C}_{\mathbf{0}} = a + bi$$
 $\mathbf{C}_{\mathbf{1}} = c + di$ $\mathbf{C} = \begin{bmatrix} C_0 \\ C_1 \end{bmatrix} \longrightarrow 4 \text{ parameters}$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{c|c} \mathbf{P}_{0} \mid \bullet \rangle = \left| \mathbf{C}_{0} \right|^{2} & \mathbf{P}_{1} \mid \bullet \rangle = \left| \mathbf{C}_{1} \right|^{2} \\ \hline \mathbf{Normalization constraint} & \left| \mathbf{C}_{0} \right|^{2} + \left| \mathbf{C}_{1} \right|^{2} = 1 \\ \hline \mathbf{C}_{1} \quad \mathbf{C} = \begin{bmatrix} C_{0} \\ C_{1} \end{bmatrix} \longrightarrow 4 \text{ parameters} \end{array}$$

$$C_0 = a + bi$$
 $C_1 = c + di$ C

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\mathbf{P}_{0} | \mathbf{O} \rangle = |\mathbf{C}_{0}|^{2} \quad \mathbf{P}_{1} | \mathbf{O} \rangle = |\mathbf{C}_{1}|^{2}$$
Normalization constraint
$$|\mathbf{C}_{0}|^{2} + |\mathbf{C}_{1}|^{2} = 1$$

Complex vector representation

$$C_0 = a + bi$$
 $C_1 = c + di$ $C = \begin{bmatrix} C_0 \\ C_1 \end{bmatrix} \longrightarrow 4 \text{ parameters}$

 $a^2 + b^2 + c^2 + d^2 = 1$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$P_{0} | \circ \rangle = |C_{0}|^{2} P_{1} | \circ \rangle = |C_{1}|^{2}$$
Normalization constraint
$$|C_{0}|^{2} + |C_{1}|^{2} = 1$$

$$\mathbf{C}_{\mathbf{0}} = a + bi$$
 $\mathbf{C}_{\mathbf{1}} = c + di$ $\mathbf{C} = \begin{bmatrix} \mathbf{C}_{\mathbf{0}} \\ \mathbf{C}_{\mathbf{1}} \end{bmatrix} \longrightarrow 4 \operatorname{dof}$

$$a^{2} + b^{2} + c^{2} + d^{2} = 1 \longrightarrow d = \sqrt{1 - a^{2} - b^{2} - c^{2}} \longrightarrow 3 \operatorname{dof}$$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{|c|c|} \mathbf{P}_{0} \mid \bullet \rangle = \left| \mathbf{C}_{0} \right|^{2} & \mathbf{P}_{1} \mid \bullet \rangle = \left| \mathbf{C}_{1} \right|^{2} \\ \hline \mathbf{Normalization constraint} & \left| \mathbf{C}_{0} \right|^{2} + \left| \mathbf{C}_{1} \right|^{2} = 1 \end{array}$$

Polar representation of C_i

$$\mathbf{C_0} = |C_0| e^{i\phi_{C_0}} \qquad \mathbf{C_1} = |C_1| e^{i\phi_{C_1}}$$
magnitude

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{|c|c|} P_0 | \bullet \rangle = |C_0|^2 & P_1 | \bullet \rangle = |C_1|^2 \\ \hline \text{Normalization constraint} & |C_0|^2 + |C_1|^2 = 1 \end{array}$$

onstrann

Polar representation of C_i

$$\mathbf{C_0} = |C_0| e^{i\phi_{C_0}} \qquad \mathbf{C_1} = |C_1| e^{i\phi_{C_1}}$$
phase
magnitude

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{|c|c|c|c|c|} \hline P_0 & \bullet \end{array} & = & |C_0|^2 & P_1 & \bullet \end{array} & = & |C_1|^2 \\ \hline \text{Normalization constraint} & & |C_0|^2 + & |C_1|^2 = 1 \end{array}$$

Polar representation of C_i

$$\mathbf{C_0} = |C_0| e^{\phi_{C_0}} \qquad \mathbf{C_1} = |C_1| e^{i\phi_{C_1}}$$
phase
magnitude

$$|\psi\rangle = |C_0|e^{i\phi_{C_0}}|0\rangle + |C_1|e^{i\phi_{C_1}}|1\rangle$$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{|c|c|} P_0 | \bullet \rangle = |C_0|^2 & P_1 | \bullet \rangle = |C_1|^2 \\ \hline \text{Normalization constraint} & |C_0|^2 + |C_1|^2 = 1 \end{array}$$

Polar representation of C_i

$$\mathbf{C_0} = |C_0| e^{i\phi_{C_0}} \qquad \mathbf{C_1} = |C_1| e^{i\phi_{C_1}}$$
phase
magnitude

$$e^{-i\phi_{C_0}}|\psi\rangle = e^{-i\phi_{C_0}}(|C_0|e^{i\phi_{C_0}}|0\rangle + |C_1|e^{i\phi_{C_1}}|1\rangle)$$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{|c|c|} P_0 | \bullet \rangle = |C_0|^2 & P_1 | \bullet \rangle = |C_1|^2 \\ \hline \text{Normalization constraint} & |C_0|^2 + |C_1|^2 = 1 \end{array}$$

Polar representation of C_i

$$\mathbf{C_0} = |C_0| e^{\phi_{C_0}} \qquad \mathbf{C_1} = |C_1| e^{i\phi_{C_1}}$$
phase
magnitude

Global phase invariance

$$e^{-i\phi_{C_0}} |\psi\rangle = e^{-i\phi_{C_0}} (|C_0| e^{i\phi_{C_0}} |0\rangle + |C_1| e^{i\phi_{C_1}} |1\rangle)$$

= $|C_0| |0\rangle + |C_1| e^{i(\phi_{C_0} - \phi_{C_1})} |1\rangle$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{|c|c|} \hline P_0 & \bullet \end{array} \rangle = \left| C_0 \right|^2 & P_1 & \bullet \end{array} \rangle = \left| C_1 \right|^2 \\ \hline \text{Normalization constraint} & \left| C_0 \right|^2 + \left| C_1 \right|^2 = 1 \end{array}$$

Polar representation of C_i

$$\mathbf{C_0} = |C_0| e^{\phi_{C_0}} \qquad \mathbf{C_1} = |C_1| e^{i\phi_{C_1}}$$
phase
magnitude

Global phase invariance

$$e^{-i\phi_{C_0}} |\psi\rangle = e^{-i\phi_{C_0}} (|C_0| e^{i\phi_{C_0}} |0\rangle + |C_1| e^{i\phi_{C_1}} |1\rangle)$$

= $|C_0| |0\rangle + |C_1| e^{i\phi_{C_0} - \phi_{C_1}} |1\rangle$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\begin{array}{|c|c|} P_0 | \bullet \rangle = |C_0|^2 & P_1 | \bullet \rangle = |C_1|^2 \\ \hline \text{Normalization constraint} & |C_0|^2 + |C_1|^2 = 1 \end{array}$$

Polar representation of C_i

$$\mathbf{C}_{\mathbf{0}} = |C_0| e^{i\phi_{C_0}} \qquad \mathbf{C}_{\mathbf{1}} = |C_1| e^{i\phi_{C_1}}$$
phase
magnitude

Global phase invariance

$$e^{-i\phi_{C_0}} |\psi\rangle = e^{-i\phi_{C_0}} (|C_0|e^{i\phi_{C_0}}|0\rangle + |C_1|e^{i\phi_{C_1}}|1\rangle)$$

= $|C_0||0\rangle + |C_1|e^{i\phi}|1\rangle$

$$|\Psi\rangle = C_0 | \circ \rangle + C_1 | \circ \rangle$$

$$\mathbf{C_0} = \cos\left(\frac{\theta}{2}\right) \qquad \mathbf{C_1} = e^{i\phi}\sin\left(\frac{\theta}{2}\right)$$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\mathbf{C_0} = \cos\left(\frac{\theta}{2}\right) \qquad \mathbf{C_1} = e^{i\phi}\sin\left(\frac{\theta}{2}\right)$$

 $\begin{array}{l} \theta & \longrightarrow \text{ relative magnitudes} \\ \phi & \longrightarrow \text{ relative phase difference} \end{array}$

$$|\Psi\rangle = C_0 | \circ \rangle + C_1 | \cdot \rangle$$

$$\mathbf{C_0} = \cos\left(\frac{\theta}{2}\right) \qquad \mathbf{C_1} = e^{i\phi}\sin\left(\frac{\theta}{2}\right)$$

 $\begin{array}{l} \theta \longrightarrow \text{relative magnitudes} & [0 - \pi] \\ \phi \longrightarrow \text{relative phase difference} & [0 - 2\pi] \end{array}$

$$|\Psi\rangle = C_0 |\bullet\rangle + C_1 |\bullet\rangle$$

$$\mathbf{C_0} = \cos\left(\frac{\theta}{2}\right) \qquad \mathbf{C_1} = e^{i\phi}\sin\left(\frac{\theta}{2}\right)$$

$$\begin{array}{c} \theta & \longrightarrow \text{latitude} \\ \phi & \longrightarrow \text{longitude} \end{array}$$

$P_0 | \circ \rangle = 50\%$ $P_1 | \circ \rangle = 50\%$

$P_0 \circ \rangle = 50$	$P_1 \cdot \rangle = 5$	0%
$\mathbf{C_0} = \frac{1}{\sqrt{2}}$	$\mathbf{C_1} = \frac{1}{\sqrt{2}}$	
$\mathbf{C_0} = \cos\left(\frac{\theta}{2}\right)$	$\mathbf{C_1} = e^{i\phi} \sin\left(\frac{\theta}{2}\right)$	$\rightarrow \theta = \frac{\pi}{2}, \phi = 0$

$P_0 $ $ $ $\rangle = 50\%$	$P_1 \cdot \rangle = 50\%$
$\mathbf{C_0} = \frac{1}{\sqrt{2}}$	$\mathbf{C_1} = \frac{1}{\sqrt{2}}$
$C_0 = cos\left(\frac{\pi}{4}\right)$	$\mathbf{C_1} = e^{i \cdot 0} sin\left(\frac{\pi}{4}\right)$

Building blocks of quantum computer

Quantum bits (QUBITS)

Building blocks of quantum computer

Quantum bits (QUBITS) Superconducting qubits Built on a chip

IBM 7-qubit QPU

37

Building blocks of quantum computer

Quantum bits (QUBITS)

Superconducting qubits Built on a chip

IBM 7-qubit QPU

37

Superconducting qubits

~ 0 K temperature

IBM 7-qubit chip

IBM 7-qubit QPU

IBM 7-qubit QPU

IBM 7-qubit chip

lonQ's trapped ions chip

IBM 7-qubit chip

IonQ's trapped ions chip

Quantum Motion's silicon chip

40

IBM system one

space size = 2^N

Gate-based model

Universal gate quantum computing

Single-Qubit Gates

Unitary conditon

Two-Qubit Gate

Two-Qubit Gate

56

10>010>

Quantum Circuit

Bell State

$$|\Psi> = \frac{1}{\sqrt{2}} (100> + 111>)$$

Shor's algorithm integer factorization

$\mathcal{O}(log(N)^3) \iff \mathcal{O}(exp(N))$

Animated diagram [link]

Grover's algorithm unstructured seach problem

 $\mathcal{O}(\sqrt{N}) < \mathcal{O}(N)$

UNORDERED LIST A searchers nightmare											
042	134	423	623	031	084	902	017	184	391	284	783
320	234	032	602	884	125	672	273	567	865	356	582
022	199	057	903	479	543	456	394	342	091	962	774
753	016	653	168	357	348	185	802	593	347	123	631
072	193	321	039	963	180	089	992	795	730	245	583
534	780	465	162	742	045	278	943	094	302	449	683

Grover is better than Google at search [link]

Learning material

MICHAEL A. NIELSEN and ISAAC L. CHUANG

CAMBRIDGE

QUANTUM TECHNOLOGY

IBM Quantum Learning

"If you want to know how physicists really think about the world, this book is the place to start."—Sean Carroll, author of The Particle at the End of the Universe

QUANTUM

MECHANICS

THE THEORETICAL MINIMUM

WHAT YOU NEED to KNOW to START DOING PHYSICS

New York Times bestselling author

LEONARD SUSSKIND

& ART FRIEDMAN

QUESTIONS?

ema.puljak@cern.ch

Interacting with environment makes qubits prone to

Quantum errors

