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“If you think you understand quantum mechanics, 
you don’t understand quantum mechanics.”

Richard Feynman
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To the nth degree 
The power of exponential growth

Perspective
The basics 

Understanding the  
exponential power of  
quantum computing

Classical computer bits can store information as either a 0 or 1. That the physical world maintains  
a fixed structure is in keeping with classical mechanics. But as scientists were able to explore subatomic  
matter, they began to see more probabilistic states: that matter took on many possible features in  
different conditions. The field of quantum physics emerged to explore and understand that phenomena.

The power of quantum computing rests on two cornerstones of quantum mechanics: interference 
and entanglement. The principle of interference allows a quantum computer to cancel unwanted 
solutions and enhance correct solutions. Entanglement means the combined state of the qubits 
contains more information than the qubits do independently. Together, these two principles 
have no classical analogy and modeling them on a classical computer would require exponential 
resources. For example, as the table below describes, representing the complexity of a 100-qubit 
quantum computer would require more classical bits than there are atoms on the planet Earth.
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Gate-based model
Universal gate quantum computing

[IBM]

space size = 2N
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Bell State
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Bell State
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Bell State
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Shor's algorithm

𝒪(log(N)3) 𝒪(exp(N))

integer factorization

<<

Animated diagram [link]
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http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/


Grover's algorithm

𝒪( N) < 𝒪(N)

unstructured seach problem

Grover is better than Google at search [link]
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https://www.youtube.com/watch?v=cA14Ol7mf5c&ab_channel=ScienceDiscussed


Yao.jl
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Learning material
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QUESTIONS?
ema.puljak@cern.ch



Interacting with environment makes qubits prone to 

Quantum errors
HEAT, COSMIC RAYS, SYSTEM ERRORS

VS

Linear Square

VS

Heavy-hex

https://www.scientificamerican.com/article/how-to-fix-quantum-computing-bugs/

