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Quantum Superposition State Quantum Entanglement
(here: Bell state)
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Quantum Superposition State Quantum Entanglement
(here: Bell state)

Can enable speed-up 
though highly parallel 

computations  

Also, non-classical 
correlations may 

speed-up computations  
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Source: https://physicsworld.com/a/saved-by-bell/

John Stewart Bell commenting on the famous
Bell’s inequalities at CERN in 1982.



Interlude: Bell inequality

5QML and Optimization – Carla Rieger30.07.24

Image source: https://physicsworld.com/a/saved-by-bell/ and 
Wikipedia.

Scarani, Valerio. Bell nonlocality. Oxford University Press, 2019.

John Stewart Bell 
commenting on the famous
Bell’s inequalities at CERN 
in 1982.

CHSH-Game
1. Alice and Bob may agree on a strategy 

before the game starts but cannot 
communicate once the game has 
started. They act cooperatively. 

2.  The referee prepares (binary) bits ! 
and " independently and at rand . om

3. Alice and Bob win if their return 
answers # ∈ 0,1 	and ) ∈ {0,1} satisfy: 
!" = # ⊕ ).
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John Stewart Bell 
commenting on the famous
Bell’s inequalities at CERN 
in 1982.

CHSH-Game

Upper bound on winning probability: 3/4 2 + √2
4 ≈ 0.85

Local hidden-variable 
theory

Shared entanglement 
and no communication

Bell’s inequality 
Violation of 
Bell’s inequality 

1. Alice and Bob may agree on a strategy 
before the game starts but cannot 
communicate once the game has 
started. They act cooperatively. 

2.  The referee prepares (binary) bits ! 
and " independently and at rand . om

3. Alice and Bob win if their return 
answers # ∈ 0,1 	and ) ∈ {0,1} satisfy: 
!" = # ⊕ ).

Image source: https://physicsworld.com/a/saved-by-bell/ and 
Wikipedia.

Scarani, Valerio. Bell nonlocality. Oxford University Press, 2019.
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This implies that the predictions of 
quantum theory cannot be accounted 
for by any local theory.  

John Stewart Bell 
commenting on the famous
Bell’s inequalities at CERN 
in 1982.

Image source: https://physicsworld.com/a/saved-by-bell/

Scarani, Valerio. Bell nonlocality. Oxford University Press, 
2019.
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John Stewart Bell 
commenting on the famous
Bell’s inequalities at CERN 
in 1982.

Image sources: https://www.nobelprize.org/all-nobel-prizes-2022/ 
and https://physicsworld.com/a/saved-by-bell/
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Nielsen, Michael A., and Isaac L. Chuang. Quantum computation 
and quantum information. Cambridge university press, 2010.
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Nielsen, Michael A., and Isaac L. Chuang. Quantum computation
and quantum information. Cambridge university press, 2010.
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Do classically intractable computations 
efficiently on a Quantum Computer 
leveraging Quantum Effects 



Applications of Quantum Computing 

12QML and Optimization – Carla Rieger30.07.24

One may successfully leverage quantum effects for: 

• Efficient sampling, search and optimization (e.g., Grover’s 
search algorithm)

• Linear algebra, matrix computations and machine learning 
(e.g., HHL-algorithm) 

• Algorithms and protocols for Cryptography and 
Communication (e.g., Shor’s algorithm, Quantum Key 
distribution)

Based on previous year‘s talk

https://indico.cern.ch/event/1170074/attachments/2489680/4275322/QC%20in%20HEP%20-%20openlab%20summer%20students%202022.pdf
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Fields in Quantum Computing
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CC CQ

QQQC

Type of algorithm

Ty
pe

 o
f d

at
a

Source: Qiskit Textbook

Simulation of Quantum 
Systems using classical ML

Simulation of Quantum 
Systems using a Quantum 
Computer
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CC CQ

QQQC

Type of algorithm

Ty
pe

 o
f d

at
a

This talk mainly focuses on quantum 
algorithms with classical input data to 
foster a simple understanding

Source: Qiskit Textbook

But: expect more advantages here
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

Source: Qiskit Textbook
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

Source: Qiskit Textbook

Find underlying 
structure in 
unlabeled data

Find underlying 
structure in 
labeled data

Train agent to optimize 
its environment-based 
decisions



Fields in Quantum Machine Learning (QML) 
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

• No loss function based on labels 
but formulate distance between 
true probability distribution and 
the model distribution

• Model should generalize in order 
to produce samples from true 
probability distribution

• Risk minimization task: 
minimize the 
discrepancy between 
the model’s prediction 
and the target output; 

• the best model has 
minimal expected loss 
over all data

• model should generalize 
well • Train an agent to make decisions 

that maximize rewards
• Rewards are given through 

interaction with the environment
Source: Qiskit Textbook

Find underlying 
structure in 
unlabeled data

Train agent to optimize 
its environment-based 
decisions

Find underlying 
structure in 
labeled data
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QML

Unsupervised 
Learning

Supervised 
Learning

Reinforcement  
Learning

e.g., Quantum Born machine: 
aims to learn to sample from 
underlying probability distribution 
,(.) of a given data set and 
generates samples via 
probabilistic measurement

e.g., Quantum Classifier: 
aims to learn input-output 
relation of labeled dataset 
0: 2!" ↦ 2#$% by optimizing 
quantum network

e.g., Quantum Reinforcement Learning: 
find policy for agent that maximizes reward 

(expected reward computed using QC) 

Source: Qiskit Textbook

Find underlying 
structure in 
unlabeled data

Find underlying 
structure in 
labeled data

Train agent to optimize 
its environment-based 
decisions
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Variational algorithms (e.g., QNN) Kernel methods (e.g., QSVM)

Energy-based models (e.g., QBM)

• Utilize gradient-based or gradient-free 
optimization procedure 

• May learn data embedding
• The design of the Ansatz circuit can leverage 

inherent symmetries of data

• Based on similarity measures between data points 
• Choose kernel function based on inherent data 

structure 
• Quantum kernel functions correspond to feature 

maps
• Encode data in high-dimensional Hilbert space and 

use inner products evaluated in the feature space 
to model data properties

• Networks of stochastic binary units are optimized 
wrt. to their energy 

• Inspired conceptually by statistical mechanics

encoding data in a high-dimensional Hilbert space and using solely
inner products evaluated in this feature space to model the properties
of the data. This is also how kernel methods work. Building on this
similarity, the authors of refs. 23,24 noted that a given quantum encod-
ing can be used to define two types of models (see Fig. 1): (a) explicit
quantummodels, where an encoded data point ismeasured according
to a variational observable that specifies its label, or (b) implicit kernel
models, where weighted inner products of encoded data points are
used to assign labels instead. In the quantum machine learning litera-
ture, much emphasis has been placed on implicit models20,25–31, in part
due to a fundamental result known as the representer theorem22. This
result shows that implicitmodels can always achieve a smaller labeling
error than explicit models, when evaluated on the same training set.
Seemingly, this suggests that implicit models are systematically more
advantageous than their explicit counterparts in solving machine
learning tasks25. This idea also inspired a line of research where, in
order to evaluate the existence of quantum advantages, classical
models were only compared to quantum kernel methods. This
restricted comparison led to the conclusion that classical models
could be competitive with (or outperform) quantum models, even in
tailored quantum problems20.

In recent times, there has also been progress in so-called data re-
uploading models32 which have demonstrated their importance in
designing expressive models, both analytically33 and empirically15,16,32,
and proving that (even single-qubit) parametrized quantum circuits
are universal function approximators34,35. Through their alternation of
data-encoding and variational unitaries, data re-uploading models can
be seen as a generalization of explicit models. However, this general-
ization also breaks the correspondence to implicit models, as a given
data point x no longer corresponds to a fixed encoded point ρ(x).
Hence, these observations suggest that data re-uploading models are
strictly more general than explicit models and that they are incom-
patible with the kernel-model paradigm. Until now, it remained an
open question whether some advantage could be gained from data re-
uploading models, in light of the guarantees of kernel methods.

In this work, we introduce a unifying framework for explicit,
implicit and data re-uploading quantum models (see Fig. 2). We
show that all function families stemming from these can be for-
mulated as linear models in suitably defined quantum feature
spaces. This allows us to systematically compare explicit and data
re-uploading models to their kernel formulations. We find that,
while kernel models are guaranteed to achieve a lower training
error, this improvement can come at the cost of a poor general-
ization performance outside the training set. Our results indicate
that the advantages of quantum machine learning may lie beyond
kernel methods, more specifically in explicit and data re-uploading
models. To corroborate this theory, we quantify the resource
requirements of these different quantum models in terms of the
number of qubits and data points needed to learn. We show the
existence of a regression task with exponential separations between
each pair of quantum models, demonstrating the practical advan-
tages of explicit models over implicit models, and of data re-
uploading models over explicit models. From an experimental
perspective, these separations shed light on the resource efficiency
of different quantum models, which is of crucial importance for
near-term applications in quantum machine learning.

Results
A unifying framework for quantum learning models
Westart by reviewing the notion of linear quantummodels and explain
how explicit and implicit models are by definition linear models in
quantum feature spaces. We then present data re-uploading models
and show how, despite being defined as a generalization of explicit
models, they can also be realized by linear models in larger Hilbert
spaces.

Linear quantum models
Let us first understand how explicit and implicit quantum models can
both be described as linear quantum models25,36. To define both of
thesemodels, we first consider a feature encoding unitaryUϕ : X ! F
that maps input vectors x 2 X , e.g., images inRd , to n-qubit quantum
states ρðxÞ=UϕðxÞ∣0i 0h ∣Uy

ϕðxÞ in the Hilbert space F of 2n × 2n Her-
mitian operators.

A linear function in the quantum feature spaceF is defined by the
expectation values

f ðxÞ= Tr ½ρðxÞO$, ð1Þ

for someHermitian observableO 2 F . Indeed, one can see from Eq. (1)
that f(x) is the Hilbert–Schmidt inner product between the Hermitian
matrices ρ(x) andO, which is by definition a linear function of the form
hϕðxÞ,wiF , for ϕ(x) = ρ(x) and w =O. In a regression task, these real-
valued expectation values are used directly to define a labeling
function, while in a classification task, they are post-processed to
produce discrete labels (using, for instance, a sign function).

Explicit and implicit models differ in the way they define the
family of observables {O} they each consider.

An explicit quantummodel23,24 using the feature encodingUϕ(x) is
defined by a variational family of unitaries V(θ) and a fixed observable
O, such that

f θðxÞ= Tr ½ρðxÞOθ$, ð2Þ

for Oθ =V(θ)†OV(θ), specify its labeling function. Restricting the family
of variational observables fOθgθ is equivalent to restricting the vectors
w accessible to the linear quantum model f ðxÞ = hϕðxÞ,wiF ,w 2 F ,
associated with the encoding ρ(x).

Implicit quantum models23,24 are constructed from the quantum
feature states ρ(x) in a different way. Their definition depends directly
on the data points {x(1),…, x(M)} in a given training setD, as they take the
form of a linear combination

f α,DðxÞ=
XM

m= 1

αmkðx,x
ðmÞÞ, ð3Þ

Fig. 1 | Thequantummachine learningmodels studied in thiswork. aAnexplicit
quantum model, where the label of a data point x is specified by the expectation
value of a variational measurement on its associated quantum feature state ρ(x).
b The quantum kernel associated with these quantum feature states. The expec-
tation value of the projectionP0 = ∣0i 0h ∣ corresponds to the inner product between
ρ(x) and ρðx0Þ. An implicit quantum model is defined by a linear combination of
such inner products, for x an input point and x0 training data points. c A data re-
uploading model, interlaying data-encoding and variational unitaries before a final
measurement.

Article https://doi.org/10.1038/s41467-023-36159-y
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due to a fundamental result known as the representer theorem22. This
result shows that implicitmodels can always achieve a smaller labeling
error than explicit models, when evaluated on the same training set.
Seemingly, this suggests that implicit models are systematically more
advantageous than their explicit counterparts in solving machine
learning tasks25. This idea also inspired a line of research where, in
order to evaluate the existence of quantum advantages, classical
models were only compared to quantum kernel methods. This
restricted comparison led to the conclusion that classical models
could be competitive with (or outperform) quantum models, even in
tailored quantum problems20.

In recent times, there has also been progress in so-called data re-
uploading models32 which have demonstrated their importance in
designing expressive models, both analytically33 and empirically15,16,32,
and proving that (even single-qubit) parametrized quantum circuits
are universal function approximators34,35. Through their alternation of
data-encoding and variational unitaries, data re-uploading models can
be seen as a generalization of explicit models. However, this general-
ization also breaks the correspondence to implicit models, as a given
data point x no longer corresponds to a fixed encoded point ρ(x).
Hence, these observations suggest that data re-uploading models are
strictly more general than explicit models and that they are incom-
patible with the kernel-model paradigm. Until now, it remained an
open question whether some advantage could be gained from data re-
uploading models, in light of the guarantees of kernel methods.

In this work, we introduce a unifying framework for explicit,
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re-uploading models to their kernel formulations. We find that,
while kernel models are guaranteed to achieve a lower training
error, this improvement can come at the cost of a poor general-
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and show how, despite being defined as a generalization of explicit
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that maps input vectors x 2 X , e.g., images inRd , to n-qubit quantum
states ρðxÞ=UϕðxÞ∣0i 0h ∣Uy

ϕðxÞ in the Hilbert space F of 2n × 2n Her-
mitian operators.

A linear function in the quantum feature spaceF is defined by the
expectation values

f ðxÞ= Tr ½ρðxÞO$, ð1Þ

for someHermitian observableO 2 F . Indeed, one can see from Eq. (1)
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matrices ρ(x) andO, which is by definition a linear function of the form
hϕðxÞ,wiF , for ϕ(x) = ρ(x) and w =O. In a regression task, these real-
valued expectation values are used directly to define a labeling
function, while in a classification task, they are post-processed to
produce discrete labels (using, for instance, a sign function).

Explicit and implicit models differ in the way they define the
family of observables {O} they each consider.
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defined by a variational family of unitaries V(θ) and a fixed observable
O, such that
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for Oθ =V(θ)†OV(θ), specify its labeling function. Restricting the family
of variational observables fOθgθ is equivalent to restricting the vectors
w accessible to the linear quantum model f ðxÞ = hϕðxÞ,wiF ,w 2 F ,
associated with the encoding ρ(x).
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on the data points {x(1),…, x(M)} in a given training setD, as they take the
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Jerbi, Sofiene, et al. "Quantum machine learning
beyond kernel methods." Nature Communications 14.1 
(2023): 1-8.

Schuld, Maria, Ilya Sinayskiy, and Francesco 
Petruccione. "An introduction to quantum machine
learning." Contemporary Physics 56.2 (2015): 172-
185.



Quantum Machine Learning life cycle
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=

Data

[ preparation \
Model Model
interpretation preparation

i t
Model

testing←
Model

training

data preprocessing, 
data embedding

parameter 
optimization loop 

evaluation wrt. 
trainability, …

QML models may 
face an input or 
output bottleneck

Source: S. Vallecorsa



Quantum Circuits and the Born rule

23

An arbitrary quantum circuit generating the state |Ψ⟩

Initialization:

      initialize qubits in 
computational basis state

QML and Optimization – Carla Rieger30.07.24



Quantum Circuits and the Born rule

24

An arbitrary quantum circuit generating the state |Ψ⟩

Evolve initial state:

      Apply set of unitary gates 
that may encode classical 
input data	"	and include 
parametrized gates

QML and Optimization – Carla Rieger30.07.24



Quantum Circuits and the Born rule

25

An arbitrary quantum circuit generating the state |Ψ⟩

Quantum Measurement

      retrieve a classical 
output distribution $ Ψ !
of classical output states
 
(with # ∈ 0,1 !) according to 
Born rule

QML and Optimization – Carla Rieger30.07.24



Parametrized Quantum Circuits – the data processing pipeline 
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Classical Dimensionality Reduction

𝓛 𝒙

Classical Optimization

(Classically) compress 
possible high-
dimensional data and 
extract features

Encode (classical) 
data in Quantum 
state

Apply a variational 
quantum circuit as e.g., 
quantum classifier 

Retrieve classical output 
via quantum 
measurement

Compute Loss function

Classically optimize 
variational circuit parameters

4%&' ⟵ 4% − 7∇(ℒ(2)



Supervised Learning in Quantum Computing: 
Quantum Classifiers
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Goal: learn the input-output relation of labeled data

Classical Neural Network Parametrized Quantum Circuit 



Embedding classical information in a Quantum Circuit

28QML and Optimization – Carla Rieger30.07.24

Angle encoding:
- Classical input encoded using rotational gates (e.g., :((4))
- Constant depth wrt. to number of encoded features
- Number of qubits ; scales linearly with the number of features <’

Amplitude encoding:
- Classical input is encoded as amplitudes of the quantum state
- <-dimensional data point 2 is encoded by a ;-qubit quantum state with < = 2"
- Much deeper circuit depth for encoding, see scaling:

A tradeoff between depth of input encoding quantum circuit 
and exponential compression of classical input data 

Schuld, Maria, and Francesco Petruccione. Supervised learning with
quantum computers. Vol. 17. Berlin: Springer, 2018.
Image source: Nielsen, Michael A., and Isaac Chuang. "Quantum 
computation and quantum information." (2002).
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Quantum Classifier example: Hierarchical quantum classifiers
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Apply Quantum Network as a 
binary classifier: measure one 
qubit 

We can encode our 
classical input features 

here

Hierarchical quantum classifiers with generic 
single-qubit unitary gates @(4, B, C)

Variational part
See: Grant, Edward, et al. 
"Hierarchical quantum classifiers." npj
Quantum Information 4.1 (2018): 65.
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Parameter optimization
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Source: https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift
https://pennylane.ai/qml/demos/tutorial_spsa

The parameter-shift rule (gradient-based)

     Compute partial derivative of variational circuit parameter 4, 
alternative to analytical gradient computation and classical finite 
difference rule (numerical errors and resource cost considerations)

Evaluate Quantum Circuit twice at shifted 
parameters to compute gradient 



Parameter optimization
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- https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift
- https://pennylane.ai/qml/demos/tutorial_spsa

Simultaneous perturbation stochastic approximation (SPSA)
(gradient-free)

      If gradient computation is not possible, too resource-intensive, 
or noise-robustness required (slower convergence but fewer function evaluations) 
      The gradient is approximated by two sampling steps, and parameters are 
perturbed in all directions simultaneously 

Iterative update rule 
comparable to classical 
stochastic gradient descent 



Challenges when using Parametrized Quantum Circuits
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• Efficient data handling and data embedding

• Find balance: Generalization and representational power vs. Convergence

• Problem of barren plateaus and vanishing gradients in optimization landscape 

• How well can we survey the Hilbert space (expressibility)?

• Current hardware limitations 

• Limited number of qubits and connectivity 

• Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

• Efficient interplay between a classical and a quantum computer

• ….

 



What is Quantum Advantage in QML?
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Multiple considerations:

1. Runtime speed-up 

2. Sample complexity

3. Representational power

 
This includes considerations regarding classical intractability: 

Focus on Quantum Circuits that are not efficiently simulable classically

Bloch sphere: only the marked points 
are produced by the Clifford operators 
acting on a computational basis state

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).
Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).
See also: - Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum
kernels." Advances in Neural Information Processing Systems 34 (2021): 12661-12673.
- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). 
https://doi.org/10.1038/s41467-021-22539-9



Interlude: Efficient classical simulation of Clifford circuits

34

A quantum circuit build up of Clifford gates can be 
efficiently simulated on a classical computer. 
(Qubit preparation and measurement in 
computational basis.)

Even highly entangled states can be simulated efficiently classically. 

The Gottesman-Knill theorem

There are more 
detailed 
considerations of 
cases with different 
computational 
complexities.

Generating set of the Clifford group:  ⟨E, F, GHIJ	⟩
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Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).
Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-
ph/9807006 (1998).
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Multiple considerations:

o Runtime speed-up 

o Sample complexity

o Representational power 

Practical advantage      Practical implementations on NISQ devices

     Need for performance metrics and fair comparisons to classical models

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).
Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).
See also: - Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in 
Neural Information Processing Systems 34 (2021): 12661-12673.
- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). 
https://doi.org/10.1038/s41467-021-22539-9
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Kiss O., Grossi M. et all., 
Conditional Born machine for 
Monte Carlo events generation, 
Phys. Rev. A 106, 022612 (2022)

Outgoing muon

Muonic force carriers (MFC)

Incoming muon

MFCs are bosons which appear in beyond-
the-standard-model theoretical frameworks
and are candidates for dark matter

Muon fixed target scattering experiment 

Monte Carlo calculations are expensive in 
time and CPU consumption
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Born machine:
Produces statistics according to Born’s measurement rule 
using parametrized quantum circuit |" # ⟩

%M & = & " # N, & ∈ 0,1 OP

Parametric Quantum Circuit 

Generate discrete PDFs 
(continuous in the limit 
increasing no. of qubits)

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

Transversal 
momentum

Pseudorapidity

Kiss O., Grossi M. et all., 
Conditional Born machine for 
Monte Carlo events generation, 
Phys. Rev. A 106, 022612 (2022)

Muon fixed target scattering experiment 



Quantum Circuit Born Machine for Event Generation

3930.07.24 QML and Optimization – Carla Rieger

• Generate samples of discrete PDFs with Born machine

• Train using Maximum Mean Discrepancy loss function:

MMD(P,Q) = %"~$
%~$

K X, Y + %"~&
%~&

K X, Y − 2%"~$
%~&

K X, Y

 

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

Kiss O., Grossi M. et all., 
Conditional Born machine for 
Monte Carlo events generation, 
Phys. Rev. A 106, 022612 (2022)

Gaussian 
kernel

efficient way to generate multivariate 
(and conditional) distributions for NISQ 
devices (suggested by numerical evidence)
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Zhou, Leo, et al. "Quantum approximate optimization
algorithm: Performance, mechanism, and implementation
on near-term devices." Physical Review X 10.2 (2020): 
021067.

The MaxCut problem (NP-complete)

Goal: partition the graph into two 
groups and maximize the number of 
edges connecting both partitions 

   assign binary variables to nodes

30.07.24
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Zhou, Leo, et al. "Quantum approximate optimization
algorithm: Performance, mechanism, and implementation
on near-term devices." Physical Review X 10.2 (2020): 
021067.

Aiming to solve a QUBO problem
 of the form: -' $ = $(/	$, $ ∈ 0,1 ) 

MaxCut problem

30.07.24

Map to an Ising Hamiltonian 
 of the general form 4 = ∑*,, 6*,,7*7,
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Zhou, Leo, et al. "Quantum approximate optimization
algorithm: Performance, mechanism, and implementation
on near-term devices." Physical Review X 10.2 (2020): 
021067.

MaxCut problem
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Fig. 1. Illustration of the warping path Ai,j of two temporal sequences a
and b. The intervals of each of the time steps do not have to be of equal size.

end point AN,N = 1. Preserverance of time ordering points
Ai,j such that it  it+1 and jt  jt+1. Restriction on step
size in form of Ait,jt � Ait+1,jt+1 2 {(1, 1), (1, 0), (0, 1)}
where t denotes the step to avoid time shifts. The best
classical algorithm runtime is O(N2

/ log log(N)) [6]. DTW
is traditionally described by a recurrence relation. However,
there is a straightforward way of writing DTW as a constrained
quadratic optimization problem (Eqn.: 11) which we present
in section III.

B. Quadratic Unconstrained Binary Optimization

A combinatorial optimization problem may be formulated
in the form of a QUBO. QUBO formulations are introduced
in various contexts, see e.g., [7]. In general, a QUBO maps a
N -dimensional binary vector to the real numbers, as follows:

fQ : {0, 1}N ! R. (1)

The map fQ depends on Q, which is given by a real-valued
constant quadratic matrix, i.e., Q 2 RN⇥N . Thus, the matrix
form of a QUBO is given as:

fQ(x) = x
T
Qx =

NX

i,j=1

Qi,j xi xj . (2)

In equation (2) x 2 {0, 1}N is the binary vector of decision
variables. The matrix Q can be written as a symmetric matrix
satisfying Q = Q

T and in upper-triangular, i.e., Qi,j = 0 for
i > j, as further described in Ref. [7].
Equation (2) is to be optimized in order for fQ(x) to be
minimized with respect to the binary vector x:

x
⇤ = argmin

x2{0,1}N

fQ(x). (3)

The QUBO optimization problem, in general, is NP-hard [7].
Hence, if P 6= NP, a problem in this complexity class cannot
be solved in polynomial time. Since this hardness assumption
is valid with respect to the optimal solution of a problem

instance, efforts are made to find approximate solutions, see
e.g., [8]. In this context, quantum computing algorithms such
as the quantum approximate optimization algorithm [9] may
be useful.

II. SOLVING QUADRATIC UNCONSTRAINED BINARY
OPTIMIZATION PROBLEMS USING QUANTUM

APPROXIMATE OPTIMIZATION ANSATZ OR QUANTUM
ANNEALERS

The QUBO problem described in matrix form by equa-
tion (2) can be mapped to an Ising Hamiltonian Hc. Thereby,
the binary variables of the decision vector xi 2 {0, 1} are
mapped to spin variables zi 2 {1,�1}. The mapping from
spin to binary variables is given by xi =

1
2 (1� zi) for each i.

In the following equation, we assume the matrix Q is given in
upper triangular form, and the Hamiltonian is given as follows:

Hc (z) =
N�1X

i=1

NX

j>i

Qi,j (1� zi) (1� zj). (4)

Solutions of a combinatorial problem described by the Hamil-
tonian Hc (z) can be found using quantum algorithms such
as QAOA. Alternatively, a quantum annealer can search the
ground state for Hc (z). Both QAOA and quantum annealers
operate based on the adiabatic theorem. This theorem states
that a system remains in its eigenstate if it is perturbed slowly
enough and if there is a spectral gap between the eigenvalue
of this specific eigenstate and the remainder of the spectrum
[11]. The system is initialized in the ground state of a simple
Hamiltonian HM (e.g., of the transverse-field Ising model).
For QAOA, one uses the given mixer Hamiltonian:

HM =
X

i

�
x

i
. (5)

Thereby, �x =

✓
0 1
1 0

◆
is one of the Pauli matrices. Next,

the system is evolved over time into the ground state of the
Hamiltonian Hc which encodes the solution of the optimiza-
tion problem. The evolution of the quantum mechanical system
is given by:

H(t) = A(t)HM +B(t)Hc (6)

with A(t), B(t) : [0, T ] 7! R and A(0) = B(T ) = 1, A(T ) =
B(0) = 0. In practice, a finite execution time T is used while
the algorithm is proven to converge to the optimal solution for
T ! 1 [9].

Next to the Hamiltonian Hc (z) describing the cost function,
there is the mixer Hamiltonian HM =

P
i
�
x

i
. Based on

both, one prepares the QAOA Ansatz state | p(~�, ~�)i that
includes (2p) trainable parameters. The Ansatz is visualized
in Figure 2 and given by:

| p(~�, ~�)i =

 
pY

k=1

[e�iHM�ke
�iHC�k ]

!
|+i

⌦nqubits (7)

Equation (7) is derived by Trotterized approximation of the
temporal evolution given by the quantum adiabatic algorithm
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of this specific eigenstate and the remainder of the spectrum
[11]. The system is initialized in the ground state of a simple
Hamiltonian HM (e.g., of the transverse-field Ising model).
For QAOA, one uses the given mixer Hamiltonian:

HM =
X

i

�
x

i
. (5)

Thereby, �x =

✓
0 1
1 0

◆
is one of the Pauli matrices. Next,

the system is evolved over time into the ground state of the
Hamiltonian Hc which encodes the solution of the optimiza-
tion problem. The evolution of the quantum mechanical system
is given by:

H(t) = A(t)HM +B(t)Hc (6)

with A(t), B(t) : [0, T ] 7! R and A(0) = B(T ) = 1, A(T ) =
B(0) = 0. In practice, a finite execution time T is used while
the algorithm is proven to converge to the optimal solution for
T ! 1 [9].

Next to the Hamiltonian Hc (z) describing the cost function,
there is the mixer Hamiltonian HM =

P
i
�
x

i
. Based on

both, one prepares the QAOA Ansatz state | p(~�, ~�)i that
includes (2p) trainable parameters. The Ansatz is visualized
in Figure 2 and given by:

| p(~�, ~�)i =

 
pY

k=1

[e�iHM�ke
�iHC�k ]

!
|+i

⌦nqubits (7)

Equation (7) is derived by Trotterized approximation of the
temporal evolution given by the quantum adiabatic algorithm
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Figure 1: The different types of database structured with respect to classical and quantum states
as index and data (C: classical, Q: quantum). Operations defined for each possible combination
of type of data and indexing for a database differ vastly.

are indexed. Thus, we can distinguish four distinct settings as shown in Figure 1. This work fo-
cuses on designing database manipulation operations for the case of quantum indexing, mainly
with respect to classical data encoded in a set of qubits. The community has discussed this
data structure within the framework of a quantum random access memory (QRAM) [6, 7]. The
QRAM query performance is reduced with respect to a classical random access memory call as
fewer logic gates need to be activated. In this model, a register state indexed by the state |ji
points to the data element |dji. A QRAM memory call returns a superposition of data states
upon providing a superposition of indices [6]:

X

j

 j |ji
QRAM call7�������!

X

j

 j |ji|dji . (1)

In (1), the amplitudes are normalized, i.e.,
P

j | j |2 = 1. The framework on which we base our
work, as introduced in the following, is aligned with the QRAM model.
Recently, the definition of quantum data centers (QDC) [8, 9] as a QRAM combined with a
quantum network has been proposed. In this proposal [8], the applications range from usage as
a T -gate resource for multiparty private quantum communication to distributed sensing through
data compression. Thus, states structured as in the QRAM model in (1) are relevant in many
ways. In the context of quantum databases, recent works aim to define database manipulation
operations acting on a quantum superposition state [10, 8, 11] hinting at the differences with
respect to classical and quantum data.

Several fundamental quantum mechanical phenomena limit the operations that can be done
within the framework of a quantum database, including the no-cloning [12], and the no-deletion

theorem [13, 14]. Other works [10, 8, 11] consider database operations such as select, extend

and delete in a more simplified manner or do not provide an implementation. An example
concerning the QRAM model is given by the Flip-Flop QRAM [15] which demonstrates a specific
implementation for writing classical data in a superposition state.

In this work, we introduce the specific set of operations that we believe are essential to oper-
ating a database in practice and that, thus, constitute the basis of our extension from classical
to quantum databases. Their definition is presented in Table 1, and their implementation will
be discussed for specific cases. In the general case of quantum indexing, we define a quantum
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database as being the state:

|QDB(k)i =
k�1X

j=0

 j |jiI |djiD 2 HI ⌦ HD , (2)

with
P

j | j |2 = 1. In the following, we often consider the restricted case of balanced database
entries, namely in (2) we have  j = 1/

p
k for 8j. For certain algorithms, we exclude the

amplitude  0 corresponding to the index |0iI |0iD from being balanced and use this state as a
probability reservoir that can be used to add new data elements or be replenished when data are
removed. The superposition state in (2) consists of a separate index (I) and a data register (D).
The index states are orthonormal and belong to the Hilbert space HI of dimension at least k. The
data states are part of the Hilbert space HD of dimension m composed of m̃ qubits with m = 2m̃.
For simplicity, we assume that both spaces are formed by qubits. The superposition state
in (2) is a linear combination of k elements. For the data elements, we used the shorthand
notation |dji = |d↵j i indicating that the j-th data is chosen from a set of states {|d↵i}↵=0,1,...

in HD. The properties of such a set of states determine if we consider the data as quantum
or classical. Specifically, classical data correspond to orthogonal states hd↵ |d�i = �↵� that
can be mapped to the computational basis by a known transformation UD. Notice that the
data elements in |QDB(k)i do not have to be chosen uniquely, meaning that it is not necessary
that ↵j 6= ↵i for j 6= i in (2). The number of qubits is chosen to be the smallest integer that
fulfills k̃ = dlog2(k)e. By dxe we denote the ceiling function that returns the smallest integer
greater than or equal to x. We consider the different scenarios for orthogonal |djiD and non-
orthogonal data entry states |d̃jiD, discuss the former situation in detail and then present an
outlook for the operations on the latter.

The rest of this article is structured as follows. We start by introducing the case of classical
indexing in Section 2 and contrast it with the case of quantum indexing in Section 3.1. For the
case of quantum indexing and classical data states, we formally define the operations:

prepare, extend, remove,
write, read-out and permute

as summarized in Table 1. We then focus on the quantum database extension algorithm pre-
sented in Section 3.1.2. Following that, we summarize implications on the defined operations in
the case of quantum data in Section 3.2 as some of the operations are equivalent to the classical
data case and conclude this work in Section 4.

2 Data structured by classical indices (CC and CQ)

In the classical computer science domain, database models encompass structured frameworks
for efficiently organizing, storing, and managing data, including hierarchical, network, relational,
and object-oriented models. Briefly, the hierarchical model arranges data in a tree-like structure,
while the network model uses a graph structure to handle complex many-to-many relationships.
The relational model stores data in normalized tables, which are accessed via structured query
languages (see, e.g., [16]), offering robust querying and indexing capabilities. Database models
emphasize the importance of individual data relationships in maintaining the integrity of data
and facilitating complex queries. Due to the maturity of this field, we focus on a form of
relational databases that organize and access the data by an integer index. The classical setup
is well known and commonly used and thus, we do not go further into detail but highlight the
relevant quantum extension from now on.
If we consider quantum data accessed by classical indexing, we think of the following setup:
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How do we operate on superposition states containing a 
quantum index register correlated to data registers?

QDB’s are relevant for quantum algorithms to operate on 
quantum database states and dynamically manipulate them.

Make use of exponential compression due to the usage of the 
superposition principle.

Manipulation operations are defined to mimic classical 
database operations.
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Figure 2: Schematic of the quantum database extension procedure consisting of adding new
qubits and creating new indices that are correlated to the empty data string. In contrast to
Algorithm 4, Algorithm 5 does not include the amplitude transfer step and uses a specifically
imbalanced database with the zero-index state acting as a probability reservoir. Both protocols
are described in detail in Section A.3.

3.1.1 Preparation of an empty QDB

To prepare a database with balanced amplitudes, quantum indexing, and an empty data register,
we apply the following operation:

HI ⌦ HD ! HI ⌦ HD

|0iI⌦D
P(k)7��! (4)

1p
k

k�1X

j=0

|jiI |0iD =: |QDB(k)
emptyi .

In (4), P(k) is particularly simple when log2(k) 2 N>0. This case corresponds to the Walsh-
Hadamard transform applied only to the index register I with a circuit depth of O(1). The
indices remain in a product state with respect to the empty data register D. Thus, the operation
is given as follows:

P(k) = H
⌦ log2(k) ⌦ ID . (5)

By creating the state |QDB(k)iempty, we have prepared an empty database with k indices in
superposition. All indices are correlated to the empty data string given by |0iD. The general case
of the preparation operation for a balanced superposition state with k indices and log2(k) /2 N>0

is presented in Appendix A.1 together with the case including the probability reservoir.

3.1.2 Extend the QDB by new indices correlated to an empty data string

The operation of extending the quantum database corresponds to expanding the number of
indices in the superposition and, crucially, correlating them to the empty data string. This
operation seems straightforward, but we will see that the possibility of having entanglement
between index and data registers is very consequential. In general, we may correlate a number
of new ancilla qubits to the index basis for the index extension procedure and aim to add as
many new indices as possible. If the database initially holds a superposition of k indices, adding
a qubit to the index basis doubles the maximal number of possible indices to 2k. Next to the
demand that the new indices be correlated to the empty data string, the database should remain
in a balanced superposition with equally distributed amplitudes. The extension operation for

5

Figure 2: Schematic of the quantum database extension procedure consisting of adding new
qubits and creating new indices that are correlated to the empty data string. In contrast to
Algorithm 4, Algorithm 5 does not include the amplitude transfer step and uses a specifically
imbalanced database with the zero-index state acting as a probability reservoir. Both protocols
are described in detail in Section A.3.

3.1.1 Preparation of an empty QDB

To prepare a database with balanced amplitudes, quantum indexing, and an empty data register,
we apply the following operation:

HI ⌦ HD ! HI ⌦ HD

|0iI⌦D
P(k)7��! (4)

1p
k

k�1X

j=0

|jiI |0iD =: |QDB(k)
emptyi .

In (4), P(k) is particularly simple when log2(k) 2 N>0. This case corresponds to the Walsh-
Hadamard transform applied only to the index register I with a circuit depth of O(1). The
indices remain in a product state with respect to the empty data register D. Thus, the operation
is given as follows:

P(k) = H
⌦ log2(k) ⌦ ID . (5)

By creating the state |QDB(k)iempty, we have prepared an empty database with k indices in
superposition. All indices are correlated to the empty data string given by |0iD. The general case
of the preparation operation for a balanced superposition state with k indices and log2(k) /2 N>0

is presented in Appendix A.1 together with the case including the probability reservoir.

3.1.2 Extend the QDB by new indices correlated to an empty data string

The operation of extending the quantum database corresponds to expanding the number of
indices in the superposition and, crucially, correlating them to the empty data string. This
operation seems straightforward, but we will see that the possibility of having entanglement
between index and data registers is very consequential. In general, we may correlate a number
of new ancilla qubits to the index basis for the index extension procedure and aim to add as
many new indices as possible. If the database initially holds a superposition of k indices, adding
a qubit to the index basis doubles the maximal number of possible indices to 2k. Next to the
demand that the new indices be correlated to the empty data string, the database should remain
in a balanced superposition with equally distributed amplitudes. The extension operation for

5

Figure 2: Schematic of the quantum database extension procedure consisting of adding new
qubits and creating new indices that are correlated to the empty data string. In contrast to
Algorithm 4, Algorithm 5 does not include the amplitude transfer step and uses a specifically
imbalanced database with the zero-index state acting as a probability reservoir. Both protocols
are described in detail in Section A.3.

3.1.1 Preparation of an empty QDB

To prepare a database with balanced amplitudes, quantum indexing, and an empty data register,
we apply the following operation:

HI ⌦ HD ! HI ⌦ HD

|0iI⌦D
P(k)7��! (4)

1p
k

k�1X

j=0

|jiI |0iD =: |QDB(k)
emptyi .

In (4), P(k) is particularly simple when log2(k) 2 N>0. This case corresponds to the Walsh-
Hadamard transform applied only to the index register I with a circuit depth of O(1). The
indices remain in a product state with respect to the empty data register D. Thus, the operation
is given as follows:

P(k) = H
⌦ log2(k) ⌦ ID . (5)

By creating the state |QDB(k)iempty, we have prepared an empty database with k indices in
superposition. All indices are correlated to the empty data string given by |0iD. The general case
of the preparation operation for a balanced superposition state with k indices and log2(k) /2 N>0

is presented in Appendix A.1 together with the case including the probability reservoir.

3.1.2 Extend the QDB by new indices correlated to an empty data string

The operation of extending the quantum database corresponds to expanding the number of
indices in the superposition and, crucially, correlating them to the empty data string. This
operation seems straightforward, but we will see that the possibility of having entanglement
between index and data registers is very consequential. In general, we may correlate a number
of new ancilla qubits to the index basis for the index extension procedure and aim to add as
many new indices as possible. If the database initially holds a superposition of k indices, adding
a qubit to the index basis doubles the maximal number of possible indices to 2k. Next to the
demand that the new indices be correlated to the empty data string, the database should remain
in a balanced superposition with equally distributed amplitudes. The extension operation for

5

Figure 2: Schematic of the quantum database extension procedure consisting of adding new
qubits and creating new indices that are correlated to the empty data string. In contrast to
Algorithm 4, Algorithm 5 does not include the amplitude transfer step and uses a specifically
imbalanced database with the zero-index state acting as a probability reservoir. Both protocols
are described in detail in Section A.3.

3.1.1 Preparation of an empty QDB

To prepare a database with balanced amplitudes, quantum indexing, and an empty data register,
we apply the following operation:

HI ⌦ HD ! HI ⌦ HD

|0iI⌦D
P(k)7��! (4)

1p
k

k�1X

j=0

|jiI |0iD =: |QDB(k)
emptyi .

In (4), P(k) is particularly simple when log2(k) 2 N>0. This case corresponds to the Walsh-
Hadamard transform applied only to the index register I with a circuit depth of O(1). The
indices remain in a product state with respect to the empty data register D. Thus, the operation
is given as follows:

P(k) = H
⌦ log2(k) ⌦ ID . (5)

By creating the state |QDB(k)iempty, we have prepared an empty database with k indices in
superposition. All indices are correlated to the empty data string given by |0iD. The general case
of the preparation operation for a balanced superposition state with k indices and log2(k) /2 N>0

is presented in Appendix A.1 together with the case including the probability reservoir.

3.1.2 Extend the QDB by new indices correlated to an empty data string

The operation of extending the quantum database corresponds to expanding the number of
indices in the superposition and, crucially, correlating them to the empty data string. This
operation seems straightforward, but we will see that the possibility of having entanglement
between index and data registers is very consequential. In general, we may correlate a number
of new ancilla qubits to the index basis for the index extension procedure and aim to add as
many new indices as possible. If the database initially holds a superposition of k indices, adding
a qubit to the index basis doubles the maximal number of possible indices to 2k. Next to the
demand that the new indices be correlated to the empty data string, the database should remain
in a balanced superposition with equally distributed amplitudes. The extension operation for

5

definition of Y (p), we define the following in order to simplify the notation

Ỹ (p) := Y (p) · Y (1/2)�1
. (33)

The implementation of Algorithm 1 presents the most general case. In order to facilitate a more
intuitive understanding, we showcase concrete examples.

Example case of Algorithm 1 for k = 22 and l = 0 .
For this, consider the case of initializing up to k = 22 with l = 0. Hence, the circuit acts on a
5-qubit register I. The goal in this exemplary case is to create a balanced superposition state

1p
22

21X

j=0

|ji (34)

in the register I. The first step is expressing k�1 as a binary number, here k�1 = 21 =: b10101.
Then, we apply unitary gates Y (p) starting from the qubit of the highest significance, noting
that certain gates will be controlled on the higher-significance qubits according to the binary
representation of (k � 1). In general, for qubit a, consider the a-th bit of k � 1 and denote it
by (k � 1)a. The initial layer of one-qubit gates creates a balanced superposition except with
regard to the splitting of the most significant bit. In the later stages of the algorithm, balanced
splitting is reverted in order to achieve an imbalanced distribution. Thereby, probabilities are
distributed according to the final number of branches in the respective binary tree diagram. The
corresponding quantum circuit for initializing k = 22 is shown in Figure 3. The circuit depth
scales linearly according to the number of qubits.
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Figure 3: Circuit diagram for creating the balanced quantum superposition state with k = 22
elements (where log2(k) 62 N). The presented quantum circuit acts on the index register of the
database, and we apply the identity otherwise. The resulting state here is given by 1p

22

P21
j=0 |ji.

Example case of Algorithm 1 for k = 14 and some l 2 N>0 .
Furthermore, we also show an example case for initializing a superposition state with l > 0
and k = 14 given by:

r
l + 1

14 + l
|0i +

1p
14 + l

13X

j=1

|ji . (35)

We present the binary tree visualization for initializing up to element 1101 in Figure 5. Each
branching step in the binary tree visualization corresponds to applying a Y (p) gate. If the
branching is non-symmetric, symmetric gates must be reverted using controlled Y (p) gates.
The corresponding quantum circuit is shown in Figure 4. The circuit depth scales linearly
according to the number of qubits.

For the aforementioned exemplary cases we had log2(k) 62 N>0. If log2(k) 2 N>0, the
generalized prepare operation acts as the Walsh-Hadamard transformation, see Section 3.1.1.
This holds true since H |0i = Y (1/2) |0i. Thus, the algorithm reduces to the balanced prepare
operation introduced in Section 3.1.1 corresponding to the Walsh-Hadamard transformation,
which has a circuit depth of O(1). This can be visualized by the circuit identity presented in
Figure 6. By applying this circuit, a superposition state with 4 elements is prepared.
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Constant-depth quantum circuit

Linear-depth (in no. qubits) quantum circuit
(e.g., Q = 14)
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Figure 4: Circuit diagram for creating the quantum superposition state with k = 14 el-
ements (where log2(k) 62 N). The presented quantum circuit acts on the index register
of the database, and we apply the identity otherwise. The resulting state here is given
by
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Figure 5: Binary tree that visualizes the step-by-step creation of new indices for a database
with a probability reservoir. In this case, 14 elements are initialized (up to binary element 1101)
and visualized in a binary tree structure. Each branching point visualizes the application of a
(conditional) Y (p) gate that leads to the creation of a new state per branching, starting from
the root towards the tree’s leaves.
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Figure 6: Circuit diagram for creating the quantum superposition state with k = 4 elements
(example for log2(k) 2 N and l = 0). The operation reduces to the Walsh-Hadamard transfor-
mation, introduced in the prepare operation in Section 3.1.1 as the initial state is given by |0i⌦3.
The presented quantum circuit acts on the index register of the database, and we apply the
identity otherwise. The resulting state here is given by 1

2

P3
j=0 |ji .

A.2 Problem with the Extend operation

The operation E(l) described in (6) cannot be implemented by a unitary operation. This holds
as the overlap is not preserved by E(l) (as it would be if E(l) is unitary) for l > 0. We formally
write this observation in the following Lemma.

Lemma 1. There does not exist a general unitary operation E(l) with l 2 N>0 that fulfills the

transformation in (6) for a general QDB state with k � 2 elements.

Proof. As before, we denote the newly added ancilla by A, and the index and data register by I

and D, respectively. We extend two individual databases containing different data elements,
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Outlook on QML and summary

4730.07.24 QML and Optimization – Carla Rieger

Research on QML applications in High Energy Physics is producing a large number of prototypical 

algorithms for potential future use-cases:
• Currently focus on algorithms for data processing in a controlled environment for current hardware

• Preliminary hints for advantage in terms of representational power of quantum states

• Mostly, algorithm performance is as good as the classical counterpart

• Need more robust studies to relate architecture of quantum computational model and its 

performance to data sets

• Identify use-cases where quantum approach is provably more efficient than classical model 

• Studying QML algorithms today links Quantum computing and Learning Theory and draw 

separation between classical and quantum learner

Based on previous year‘s talk

https://indico.cern.ch/event/1170074/attachments/2489680/4275322/QC%20in%20HEP%20-%20openlab%20summer%20students%202022.pdf
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Thank you, 
are there any
questions?
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