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Recap: the key features of Quantum Computing
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Quantum Superposition State Quantum Entanglement
(here: Bell state)
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Recap: the key features of Quantum Computing

Quantum Superposition State Quantum Entanglement
(here: Bell state)

Can enable speed-up Also, non-classical
though highly parallel correlations may
computations speed-up computations
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Interlude: Bell at CERN

-y o >
- -?9
\

John Stewart Bell commenting on the famous
Bell's inequalities at CERN in 1982.

Source: https://physicsworld.com/a/saved-by-bell/
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Interiude: Bell inequality

CHSH-Game
1. Alice and Bob may agree on a strategy
before the game starts but cannot
: communicate once the game has John Stewart Bell
Alice Bob started. They act cooperatively. commenting on he famous
in 1982.
4 Y b 2. The referee prepares (binary) bits x
a and y independently and at rand . om
Referee 3. Alice and Bob win if their return
5 answers a € {0,1} and b € {0,1} satisfy:
TAYy=ab xy =a@®b.

Image source: https://physicsworld.com/a/saved-by-bell/ and
Wikipedia.

Scarani, Valerio. Bell nonlocality. Oxford University Press, 2019.
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Interiude: Bell inequality

CHSH-Game
1. Alice and Bob may agree on a strategy
before the game starts but cannot
: communicate once the game has John Stewart Bell
Alice Bob started. They act cooperatively. commenting onte farous
in 1982.
& Y A 2. The referee prepares (binary) bits x
G and y independently and at rand . om
Referee 3. Alice and Bob win if their return , . ) Violation of
: answers a € {0,1}and b € {0,1} satisfy: Bell’s inequality Bell’s inequality
cTAy=a®b xy=a@®b. / ‘
X — R 2+ /2
» Upper bound on winning probability: 3/4 £ 085
4
\ l
|
Local hidden'variable Shared entanglement
Image source: https://physicsworld.com/a/saved-by-bell/ and theory and no communication
Wikipedia.

Scarani, Valerio. Bell nonlocality. Oxford University Press, 2019.
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Interiude: Bell inequality

John Stewart Bell

commenting on the famous
Bell's inequalities at CERN
in 1982.

This implies that the predictions of

quantum theory cannot be accounted
for by any local theory.

Image source: https://physicsworld.com/a/saved-by-bell/

Scarani, Valerio. Bell nonlocality. Oxford University Press,
2019.
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Interlude: Bell inequality

— z

John Stewart Bell

Alain Aspect John F. Clauser Anton Zeilinger
commenting on the famous
Bell's inequalities at CERN
“for experiments with entangled photons, “for experiments with entangled photons, “for experiments with entangled photons, in 1982.

establishing the violation of Bell inequalities

establishing the violation of Bell inequalities establishing the violation of Bell inequalities
and pioneering quantum information science”

and pioneering quantum information science” and pioneering quantum information science”

© Nobel Prize Outreach. Photo: Stefan Bladh

© Nobel Prize Outreach. Photo: Stefan Bladh © Nobel Prize Outreach. Photo: Stefan Bladh

Image sources: https://www.nobelprize.org/all-nobel-prizes-2022/
and https://physicsworld.com/a/saved-by-bell/
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Recap: Basic one qubit gates

Quantum Theory is unitary — gates are represented by unitary matrices U ——» [J f U=1

- 0 1 o — 1 0 (0 —3 - 1 ( 1 1 )
Bit flip Phase flip Bit + phase flip Hadamard gate

- Pauli matrices (together with identity matrix) form basis of 2x2 matrices

- any 1-qubit rotation can be written as a linear combination of Pauli gates
1
V2

Apply H on computational basis state

Hiz) = —=(|0) + (=1)*[1)), = € {0,1}

Nielsen, Michael A., and Isaac L. Chuang. Quantum computation
and quantum information. Cambridge university press, 2010.
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Recap: Basic two qubit gate

- since Quantum Theory is unitary, gates must be reversible
- CNOT gate: reversible XOR gate

H H
|z) l |z) / Switched CNOT gate

) s> b )

CNOT gate 0) H
l |00)+|11)
V2
1¥) = Z5(l01) ~ [10) / |0> N
1¥*) = 5(101) + [10)
1®7) = 35(100) = 111)) l & @ Creating entanglement —> switch
|®*) = 25(100) + [11))

o (M) computational to Bell basis
Measurement in Bell basis

Nielsen, Michael A., and Isaac L. Chuang. Quantum computation
and quantum information. Cambridge university press, 2010.
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Aim of Quantum Computing

Do classically intractable computations
efficiently on a Quantum Computer
leveraging Quantum Effects
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Applications of Quantum Computing

One may successfully leverage quantum effects for:

 Efficient sampling, search and optimization (e.g., Grover’s
search algorithm)

« Linear algebra, matrix computations and machine learning
(e.g., HHL-algorithm)

» Algorithms and protocols for Cryptography and
Communication (e.g., Shor’s algorithm, Quantum Key
distribution)

Based on previous year’s talk
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https://indico.cern.ch/event/1170074/attachments/2489680/4275322/QC%20in%20HEP%20-%20openlab%20summer%20students%202022.pdf

What is Quantum Machine Learning?
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Fields in Quantum Computing

Type of algorithm

Type of data

Source: Qiskit Textbook
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Fields in Quantum Computing

Type of algorithm

Simulation of Quantum

Simulation of Quantum Systems using a Quantum
Systems using classical ML Computer

I Type of data

Source: Qiskit Textbook
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Fields in Quantum Computing

2 1Q)

This talk mainly focuses on quantum
algorithms with classical input data to
foster a simple understanding

Type of algorithm

Type of data

But: expect more advantages here

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML)

Supervised Unsupervised

Learning '\ / Learning

|

Reinforcement
Learning

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML)

Find underlying
structure in
unlabeled data

Find underlying
structure in
labeled data

Supervised Unsupervised

Learning '\ / Learning

|

Reinforcement
Learning

Train agent to optimize
its environment-based
decisions

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML)

Find underlying
structure in
unlabeled data

Find underlying
structure in
labeled data

Supervised Unsupervised

Learning '\ / Learning

 Risk minimization task: * No loss function based on labels
minimize the but formulate distance between
discrepancy between true probability distribution and

the model’s prediction the model distribution

and the target output; * Model should generalize in order
* the best model has l to produce samples from true
minimal expected loss Reinforcement probability distribution
over all data Learning
* model should generalize
well « Train an agent to make decisions

that maximize rewards
« Rewards are given through
interaction with the environment

UANTUM \
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Train agent to optimize
its environment-based
decisions

Source: Qiskit Textbook
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Fields in Quantum Machine Learning (QML)

Find underlying
structure in
labeled data

Supervised

Learning '\

e.g., Quantum Classifier:
aims to learn input-output
relation of labeled dataset
f:Xin © Xoue DY Optimizing
quantum network l

Reinforcement
Learning

e.g., Quantum Reinforcement Learning:
find policy for agent that maximizes reward
(expected reward computed using QC)

QUANTUM
TECHNOLOGY
INITIATIVE

30.07.24 QML and Optimization — Carla Rieger

Find underlying
structure in
unlabeled data

Unsupervised

/ Learning

e.g., Quantum Born machine:
aims to learn to sample from
underlying probability distribution
n(y) of a given data set and
generates samples via
probabilistic measurement

Train agent to optimize
its environment-based
decisions

Source: Qiskit Textbook
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Further differentiating Quantum Machine Learning Models

/

Variational algorithms (e.g., QNN)

« Utilize gradient-based or gradient-free
optimization procedure
« May learn data embedding

* The design of the Ansatz circuit can leverage

inherent symmetries of data

10)
|6>j Uy (x) q] v (6) 0
g

Feature encodin. Variational meas.

T

maps

Kernel methods (e.g., QSVM)

« Based on similarity measures between data points

« Choose kernel function based on inherent data
structure

* Quantum kernel functions correspond to feature

« Encode data in high-dimensional Hilbert space and
use inner products evaluated in the feature space
to model data properties

0)
10)

A
Up@ [uje) Po

Quantum kernel

Energy-based models (e.g., QBM)

* Networks of stochastic binary units are optimized
wrt. to their energy
* Inspired conceptually by statistical mechanics

30.07.24

QML and Optimization — Carla Rieger

Jerbi, Sofiene, et al. "Quantum machine learning
beyond kernel methods." Nature Communications 14.1
(2023): 1-8.

Schuld, Maria, llya Sinayskiy, and Francesco
Petruccione. "An introduction to quantum machine
learning." Contemporary Physics 56.2 (2015): 172-
185.

QUANTUM
CE/R;W IQ ) TECHNOLOGY
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QML models may

Quantum Machine Learning life cycle
face an input or

M data preprocessing,
= pwﬁom data embedding
output bottleneck /

Modul ModL
Inkespretapion pProovodiony

evaluation wrt. K /
Mw
nhing S Modul
na optimization loop

traxn |'n9,

Source: S. Vallecorsa

22
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Quantum Circuits and the Born rule

Initialization:

— initialize qubits in
computational basis state

An arbitrary quantum circuit generating the state |¥)
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Quantum Circuits and the Born rule

Evolve initial state:

— Apply set of unitary gates
that may encode classical
input data x and include
parametrized gates

An arbitrary quantum circuit generating the state |¥)

QUANTUM
%E{W ‘ IQ ) TECHNOLOGY 30.07.24
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Quantum Circuits and the Born rule

|07—’ Quantum Measurement
100 —

— — retrieve a classical
|07 | output distribution |{(x|¥)|?
00— of classical output states
00— | (with x € {0,1}") according to

Born rule
An arbitrary quantum circuit generating the state |¥)

cm”ﬂl

\
S
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Parametrized Quantum Circuits — the data processing pipeline

Encode (classical)

data in Quantum Apply a variational

state quantum circuit as e.g.,

| ¥ quantum classifier
- — — Retrieve classical output
T Date [ Ouamtam [~ Vi@ quantum
. Embedding ] Classifier — measurement

— L(x) Compute Loss function

(Classically) compress | _J

possible high-

dimensional data and _ o
extract features Classically optimize
variational circuit parameters

Or11 < 0 — NV, L(x)
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Supervised Learning in Quantum Computing:
Quantum Classifiers

Goal: learn the input-output relation of labeled data

— { ou(®%8)> = UX,8)I03 "™
A\
— input rainable
u\eﬁuis
‘f(f?"f)" R™ - R™ JF8) = Lo (i) | Ol Youe 3,80
inpuk  hainalole weiskTS
Classical Neural Network Parametrized Quantum Circuit
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Embedding classical information in a Quantum Circuit

—— A tradeoff between depth of input encoding quantum circuit
and exponential compression of classical input data

Angle encoding:

- Classical input encoded using rotational gates (e.g., R,.(0))
- Constant depth wrt. to number of encoded features
- Number of qubits n scales linearly with the number of features N’

h « 6(N} ; ngai(s‘x n

Amplitude encoding:

- Classical input is encoded as amplitudes of the quantum state

- N-dimensional data point x is encoded by a n-qubit quantum state with N = 2"
- Much deeper circuit depth for encoding, see scaling:

n
N oK 0’(&6 (N)) J ﬂswcs A a(Poe’j (N)) = a(POy (Z » Schuld, Maria, and Francesco Petruccione. Supervised learning with
quantum computers. Vol. 17. Berlin: Springer, 2018.
Image source: Nielsen, Michael A., and Isaac Chuang. "Quantum
computation and quantum mformatlon (2002).
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Quantum Classifier example: Hierarchical quantum classifiers

Hierarchical quantum classifiers with generic ‘ 1708 6. 3 — cos(60/2) —e" sin(0/2)
single-qubit unitary gates U (60, ¢, 1) g CRPY e sin(0/2) e +N) cos(6/2)

0) — [U(6,) | T

0) - H U (62) D U(69) —o

0) - H U(03) —

07 - Uone (%) U (64) €6 U(610) 45| U(613) Apply Quantum Network as a

04 THU@6s) e binary classifier: measure one

0) - {U(05) b U(011) [ qubtt

0) 1 U(67) -+

0) - H U(0s) HD{ U(612) D U(014) HDHFF

\ )
|
We can encode our Variational part See: Grant, Edward, et al.
classical input features "Hierarchical quantum classifiers." npj
here Quantum Information 4.1 (2018): 65.

29
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Parameter optimization

The parameter-shift rule (gradient-based)

9 - 9—’1‘75]?

A
— Compute partial derivative of variational circuit parameter 6, ( < A(O) )
alternative to analytical gradient computation and classical finite
difference rule (numerical errors and resource cost considerations)

——

4> —Jiw—=

A A LN AO-L
W107*" ./ gy oS
— _ o A
Some gates Uu-=¢
(not dapending “-*OE” — Evaluate Quantum Circuit twice at shifted
on ©) “:«',"z: A nt parameters to compute gradient
G ot urs
appicaloll
buk exact ’

Source: https://pennylane.ai/gml/demos/tutorial_stochastic_parameter_shift
https://pennylane.ai/gml/demos/tutorial_spsa
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Parameter optimization

Simultaneous perturbation stochastic approximation (SPSA)

(gradient-free)

6 “ Q- a.‘é!é,)
kel —

he
shepae
of V f

— |f gradient computation is not possible, too resource-intensive,
or noise-robustness required (slower convergence but fewer function evaluations)
— The gradient is approximated by two sampling steps, and parameters are

perturbed in all directions simultaneously

—_

: ‘2’(9): *‘9)4'2:. raud.om

adpul gerfwrbation
C (6) = v(ek.*ckbk) =9 (ég"ck Ak)
e,
L by

CK>/°; Akz (Akglakz/“'/ Akp)r P‘-’ﬂ'ﬂlbmﬂ mor
(‘VFWOM|5 Iganm

from 2erS- mean disir.)

INITIATIVE
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lterative update rule
comparable to classical
stochastic gradient descent

- https://[pennylane.ai/gml/demos/tutorial_stochastic_parameter_shift
- https://pennylane.ai/gml/demos/tutorial_spsa
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Challenges when using Parametrized Quantum Circuits

- Efficient data handling and data embedding
« Find balance: Generalization and representational power vs. Convergence
« Problem of barren plateaus and vanishing gradients in optimization landscape

 How well can we survey the Hilbert space (expressibility)?

« Current hardware limitations
« Limited number of qubits and connectivity
 Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

- Efficient interplay between a classical and a quantum computer

UANTUM - . ; 4 :
CiE/RW IQ ) -?ECHNOLOGY QML and Optimization — Carla Rieger | _ .
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What is Quantum Advantage in QML? 10

Multiple considerations:

|-i2 1
1. Runtime speed-up
2. Sample complexity
149
3. Representational pOWGr Bloch sphere: only the marked points

are produced by the Clifford operators
acting on a computational basis state

This includes considerations regarding classical intractability:

Focus on Quantum Circuits that are not efficiently simulable classically

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).

Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).
See also: - Klbler, Jonas, Simon Buchholz, and Bernhard Scholkopf. "The inductive bias of quantum

kernels." Advances in Neural Information Processing Systems 34 (2021): 12661-12673.

- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021).
https://doi.org/10.1038/s41467-021-22539-9
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Interlude: Efficient classical simulation of Clifford circuits

The Gottesman-Knill theorem

A quantum circuit build up of Clifford gates can be There are more
P Y / : detailed
eff:c:_ently s:mylated on a classical gomputer. | considerations of
(Qubit preparation and measurement in cases with different
. . computational
computational basis.) complexities.

— Even highly entangled states can be simulated efficiently classically.

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002)

Generating set of the Clifford group: (H, S CNOT ) Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-.

ph/9807006 (1998).
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What is Quantum Advantage in QML?

Multiple considerations:
o Runtime speed-up
o Sample complexity

o Representational power

Practical advantage — Practical implementations on NISQ devices

— Need for performance metrics and fair comparisons to classical models

Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002).

Gottesman, Daniel. "The Heisenberg representation of quantum computers." arXiv preprint quant-ph/9807006 (1998).

See also: - Klbler, Jonas, Simon Buchholz, and Bernhard Schélkopf. "The inductive bias of quantum kernels." Advances in
Neural Information Processing Systems 34 (2021): 12661-12673.

- Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021).
https://doi.org/10.1038/s41467-021-22539-9
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Examples and
use-cases




Quantum Circuit Born Machine for Event Generation

u~  Outgoing muon

Incoming muon K

Muonic force carriers (MFC)

Muon fixed target scattering experiment

— MFCs are bosons which appear in beyond-
the-standard-model theoretical frameworks

and are candidates for dark matter
Kiss O., Grossi M. et all.,

—> Monte Carlo calculations are expensive in Conditional Born machine for
. . Monte Carlo events generation,
time and CPU consumption Phys. Row. A 106, 022612 (2022)

UANTUM
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Quantum Circuit Born Machine for Event Generation

Born machine:
Produces statistics according to Born’s measurement rule
using parametrized quantum circuit |(6)) )

po(x) = x| (012, x € {0,1}°"

Muon fixed target scattering experiment

qA —A U@ - U@ F{—>] energy
o ! | o ! | Generate discrete PDFs
B ——HI— - e 1] pt — (continuous in the limit
. B E i B L omenm increasing no. of qubits)
qC —A4 U@ - - — FEue)- n
*TGORR.” VAR, FORM *"GORR. VAR, FORM T
Parametric Quantum Circuit [ = Kiss O., Grossi M. et all.,
S P R Conditional Born machine for
- qu— —{H—o— Monte Carlo events generation,
B — —— Phys. Rev. A 106, 022612 (2022)

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)
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Quantum Circuit Born Machine for Event Generation

2000 -

target
. . . 17504 [ classical -
* Generate samples of discrete PDFs with Born machine | | = = = 0
. . . . . 7 ibmq montreal - L
« Train using Maximum Mean Discrepancy loss function: g 0 J—
5 1000 =
S -
MMD(P,Q) = Ex~p[K(X, Y)] + Ex~q[K(X, Y)] — 2Ex~p[K(X, Y)] 7301 .
Y~P Y~Q Y~Q " g Gy 5001 - H
e ) IO ==
0
1.5+ !
. " . . o) ) { k¥
—— efficient way to generate multivariate £10] mtré%*“? ety
(and conditional) distributions for NISQ ! ‘ e |
devices (suggested by numerical evidence) Energy [GeV]

Kiss O., Grossi M. et all.,
Conditional Born machine for
Monte Carlo events generation,
Phys. Rev. A 106, 022612 (2022)

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)
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Solving combinatorial problems using QAOA

The MaxCut problem (NP-complete)

Goal: partition the graph into two
groups and maximize the number of
edges connecting both partitions

— assign binary variables to nodes

w;; = 1forVi,j

Zhou, Leo, et al. "Quantum approximate optimization
algorithm: Performance, mechanism, and implementation
on near-term devices." Physical Review X 10.2 (2020):
021067.

40
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Solving combinatorial problems using QAOA

MaxCut problem
Aiming to solve a QUBO problem w;,j =1 forVi,j

of the form: fo(x) = x"Q x, x € {0,1}"

Map to an Ising Hamiltonian
of the general form H = .; ; J; ;Z;Z;

Zhou, Leo, et al. "Quantum approximate optimization
algorithm: Performance, mechanism, and implementation
on near-term devices." Physical Review X 10.2 (2020):
021067.
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Solving combinatorial problems using QAOA

N
fo(r) =27Qx = Z Qi TiT; z* = argmin fo(r) QUBO problem MaxCut problem
i,j=1 ze{0,1}N Wi, = 1 fOI‘V’i,j
z; € {0,1}
Zi € {1,—1}

N—-1 N
He(z)= )Y Qi;(1—z)(1-2) Ising-type Hamiltonian
=1 j>1
H(t) = A(t) Hy + B() He  Hy =S o7 S R
= M c M=) 0; Quantum Adiabatic {u,v}e
¢ Algorithm
A(t), B(t) : [0, T] =R A(0)=B(T)=1 AT)= B(0) =
Zhou, Leo, et al. "Quantum approximate optimization
algorithm: Performance, mechanism, and implementation
Trotterization of Temporal Evolution on near-term devices." Physical Review X 10.2 (2020):

021067.
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Solving combinatorial problems using QAOA

QAOA Ansatz and hybrid optimization procedure

MaxCut Graph

(’?71@) — (’717'”771)71317”')/61))
@ measure

[ variational parameters

Xg,
Xg,
Xﬁp Classically optimize angles:
/ Hybrid procedure
Cost Hamiltonian Mixer Hamiltonian Zhou, Leo, et al. "Quantum approximate optimization

algorithm: Performance, mechanism, and implementation
on near-term devices." Physical Review X 10.2 (2020):
021067.
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Quantum Databases in a General Context

@ 1)

Type of data

classical quantum
4 N I\
&
a0 % — Y
2100 CQ T & cour
= i=0
=
o
© k—1
5 5 QDB®) = 3" 0 1j), 1d)p € Hs © Mo
o é 7=0
=
=
o

Rieger, Carla, et al. "Operational
Framework for a Quantum
Database." arXiv preprint
arXiv:2405.14947 (2024).
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Quantum Databases (QDB)

k—1
How do we operate on superposition states containing a |QDB(’“)> — Z ur 7Y |d j> H €EHI®Hp
quantum index register correlated to data registers? =0

— QDB’s are relevant for quantum algorithms to operate on
quantum database states and dynamically manipulate them.

— Make use of exponential compression due to the usage of the
superposition principle.

—* Manipulation operations are defined to mimic classical
database operations.

prepare, extend, remouve,

write, read-out and permute Rieger, Carla, et al. "Operational
Framework for a Quantum
Database." arXiv preprint

arXiv:2405.14947 (2024).
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Quantum Databases (QDB)

Example: QDB Prepare Algorithm with qubits for State Preparation

I0>*Y(18T*llz) ! i
Hr@Hp = Hi ®Hp logy (k) ¢ N e o
0) — Y (%) V(1) Y (3
Pyy 1 ! . L2l s
| : ) —¥ (3) Y)Y ()
0)rop — 7 > 1ilo)p
7=0 Linear-depth (in no. qubits) quantum circuit
(e.g., k = 14)
logy (k) € Nxo
P(k) _ H® logs (k) Q ]ID
Constant-depth quantum circuit Rieger, Carla, et al. "Operational

Framework for a Quantum
Database." arXiv preprint
arXiv:2405.14947 (2024).
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Outlook on QML and summary

Research on QML applications in High Energy Physics is producing a large number of prototypical

algorithms for potential future use-cases:

» Currently focus on algorithms for data processing in a controlled environment for current hardware

» Preliminary hints for advantage in terms of representational power of quantum states

» Mostly, algorithm performance is as good as the classical counterpart

» Need more robust studies to relate architecture of quantum computational model and its
performance to data sets

» Identify use-cases where quantum approach is provably more efficient than classical model

« Studying QML algorithms today links Quantum computing and Learning Theory and draw

separation between classical and quantum learner

Based on previous year’s talk
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https://indico.cern.ch/event/1170074/attachments/2489680/4275322/QC%20in%20HEP%20-%20openlab%20summer%20students%202022.pdf

Thank you,

are there any
questions?

carla.sophie.rieger@cern.ch
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