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HEP Data Processing & Analysis

• Nearly all HEP results are built on simulations:

o Detector design, analysis optimization, background estimation, etc.

• As we probe rarer processes, explore more complicated models, and make more precise measurements:

o Accuracy and computational speed increase in importance!
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Pileup Somewhat collider-centric view, 
but conceptually similar in 
neutrino physics, astrophysics, etc.



Computing

• A new precision era is imminent: HL-LHC, DUNE, LSST, SKA

o 10× or more data compared to existing experiments

• Simulation needs to deliver more events with more complexity and more accuracy

o Match growing data volumes and improved detectors… while using smaller fraction of computing!

 To allow for increasing fraction of reconstruction (scales superlinearly with pileup)
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ML4Sim Landscape
• Options to use ML for sim:

1. Replace or augment (part or all of) Geant4

2. Replace or augment (part or all of) FastSim

• Goals:

1. Increase speed while preserving accuracy

2. Preserve speed while increasing accuracy

• ML can also create faster, but less accurate simulation

o à la existing classical FastSim

 then augment w/ more ML to improve accuracy

• Another option: replace entire chain (“end-to-end”)

o Complements other cases
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(ML?)

arXiv:2203.08806

“replace” → generative ML
“augment” → ML refinement

https://arxiv.org/abs/2203.08806


Generative Models
• Implicit density estimation: Generative 

Adversarial Networks (GANs)
o Pros: fast
o Cons: can suffer from mode collapse, lack of 

convergence, etc.
• Exact density estimation: Normalizing Flows 

(NFs), Autoregressive models (ARs)
o Pros: accurate, fast in one direction
o Cons: poor scaling, slow in other direction

• Approximate density estimation: Variational
Autoencoders (VAEs), Diffusion Models (DMs)
o VAEs: fast, but limited quality
o DMs: high quality, but slow

• Non-generative: reweighting, refinement
o Classification- or regression-based

HSF Detector Simulation Working Group Kevin Pedro 5

L. Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Generative Models for ATLAS Simulation

• FastCaloGAN architecture: Wasserstein loss
prevents mode collapse

• Separate GANs trained for 100 η slices and for 
each particle type: γ, e, π±, p → 600 total
o Hyperparameters optimized for each particle
o ~100 V100 GPU-days for final training

• Irregular geometry voxelized for training
• Incorporated in AtlFast3 along with FullSim and 

FastSim modules (depending on particle type, etc.)

• Good agreement for protons (new!)

• Hybrid approach improves modeling of high-
level quantities
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Simulation

CHEP2023: #420, #424

https://indico.jlab.org/event/459/contributions/11426/
https://indico.jlab.org/event/459/contributions/11762/


7 Years of ML4Sim
• From my database of 100+ ML4Sim-related papers

• Normalizing flows and diffusion models supplanting 
traditional GANs and VAEs

• Almost exponential takeoff for diffusion models

o Following industry dominance in image generation: 
Stable Diffusion, DALL∙E, Midjourney, etc.

• Some growing interest in autoregressive models

o Perhaps motivated by success in industry (GPT)

• Common datasets and metrics: big step forward to 
compare different approaches
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“Other” = non-generative models (FCNs, CNNs, 
GNNs), typically regression-based approaches

Simulation



CaloChallenge

• Common datasets are crucial to compare different generative methods
o Using metrics discussed on next slide

• Many new methods developed for the challenge
o Preliminary comparisons will be shown
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• CaloChallenge: first competition for 
generative ML for detector simulation

• Three public datasets provided:
1. Low granularity, irregular geometry 

(based on ATLAS calorimeter), photon 
& pion showers

2. Medium granularity, silicon-tungsten 
sampling calorimeter, electron showers

3. High granularity, otherwise same as #2

Simulation

https://calochallenge.github.io/homepage/


Metrics
• Speed only matters if needed accuracy is achieved
o Wrong answers can be obtained infinitely fast

• 1D histograms:
o e.g. separation power ‹S²(g,h)› = ½∑(g–h)²⁄(g+h)

o Can miss high-dimensional correlations
• Best category: integral probability metrics

o Wasserstein distance W1: F is set of all K-
Lipschitz functions
 Only works well in 1D, biased in high-D

o Maximum mean discrepancy (MMD): F is unit 
ball in reproducing kernel Hilbert space
 Depends on choice of kernel

o Fréchet distance: W2 distance between 
Gaussian fits to (high-D) feature space
 Features can be hand-engineered or obtained 

from NN activations
• Another interesting category: classifier scores
o Train NN to distinguish real vs. generated
o AUC score: ranges from 0.5 to 1.0
o Log-posterior probability in multiclass case

• Fréchet Particle Distance most clearly 
distinguishes between two similar approaches
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Simulation

https://arxiv.org/abs/2211.10295


CaloChallenge Results

• Diffusion models and normalizing flows tend 
to have best performance

• However, diffusion models especially tend to 
be slower in inference
o Iterative process – multiple steps required to 

get highest accuracy
• Benefit of following industry trends: frequent 

papers with new methods to speed up diffusion 
models → easy to adopt in HEP
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C. Krause

Simulation

https://indico.cern.ch/event/1253794/contributions/5588599/


CaloDiffusion
• Current state-of-the-art model: denoising w/ convolutional U-net architecture
o Various geometric adaptations:
 Conditional cylindrical convolutions
 Geometry latent mapping for irregular detectors
 Attention layers for long-range correlations in z

• Comparison to other SOTA models:
o Best classifier AUC scores
o Low distance values compared to Geant4
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• Improvement from original:
LayerDiffusion to predict total energy per layer 
→ 4× speedup & better quality
o More speedups in arXiv:2401.13162

†

arXiv:2308.03876

Simulation

Improved
N = 100

Original
N = 400

ML4Jets2023

https://arxiv.org/abs/2401.13162
https://arxiv.org/abs/2308.03876
https://indico.cern.ch/event/1253794/contributions/5588571/


Why Convolutions?
• Convolutions started the modern machine learning revolution (AlexNet, 2012)
o Spatial locality and translational invariance
o Shared weights → fewer parameters, better scaling
o Highly efficient on GPUs: spatial locality implies memory locality

• Ideally suited for computer vision with rectangular images
o Application to irregular geometries requires innovations

• Graph neural networks?
o Pro: natural representation for irregular geometries
o Cons: adjacency matrices consume substantial memory; operations less local/efficient; hard to 

generate arbitrary output (masking technique exists, but difficult to scale)
• Point clouds or transformers?
o Pro: no adjacency matrix consuming memory
o Con: discards useful geometric information, which then must be learned from (often sparse) inputs
 For generative applications, convolutions still have a lot to offer!
o And they can keep up with transformers when trained properly… arXiv:2310.16764
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(source)

https://arxiv.org/abs/2310.16764
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Diffusion for Liquid Argon TPCs
• Diffusion models can also simulate ionization deposits from

charged tracks in LAr TPC detectors

o Here, score-based rather than denoising model is used

• Both visual and quantitative comparisons

o Various distance metrics, SSNet scores,
Fréchet inception distance (from SSNet activations)

• Superior to previous attempts (VAE)
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arXiv:2307.13687

Simulation

https://arxiv.org/abs/1808.07269
https://arxiv.org/abs/2307.13687


Diffusion for Astrophysical Images
• Diffusion models can simulate various astrophysical phenomena
o Denoising DM for CMB maps (21 cm brightness temperature)

• Quantified using Fréchet scattering distance (from coefficients)
o Substantial improvement over GANs
o ~100× slower than GANs, but GPU inference

still ~5× faster than traditional CPU-based simulation
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• Also applied to:
o Galaxy images (arXiv:2111.01713)

o Dark matter maps (arXiv:2211.12444)

Simulation

arXiv:2307.09568

https://arxiv.org/abs/2111.01713
https://arxiv.org/abs/2211.12444
https://arxiv.org/abs/2307.09568


High-Level Refinement
• Alternate approach: ML adjusts high-level

quantities from existing CMS FastSim to match FullSim
o Replaces coarse, manual correction factors

• Loss functions: ensemble & object-by-object comparisons
• Improves metrics, 1D distributions, correlations
• Generalizes to other processes; now being extended to more

variables for Run 3 deployment 
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arXiv:2309.12919

Analysis

https://arxiv.org/abs/2309.12919


Constrained Optimization
• General principle: you can’t optimize for two things at once
o Instead, optimize for one thing with constraints on others (Lagrange)

• Multiple loss terms are one approach to encode domain knowledge
 ; set λ by trial and error
o No guarantee of optimality; hard to control and understand
 modified differential method of multipliers (mdmm): [paper, blog, code]
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learnable

gradient ascent constraint damping to ensure convergence

hyperparameter (convergence rate)

arXiv:2309.12919

• In high-level refinement: balance per-event and ensemble 
losses (first known usage in HEP)
o Minimize per-event: bad ensemble value
o Minimize ensemble: per-event still good!
 Find Pareto front (concave or convex) and pick tradeoff

https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/
https://github.com/crowsonkb/mdmm
https://arxiv.org/abs/2309.12919


End-to-end: FlashSim

• Normalizing flow to predict high-level analysis 
quantities from generator-level information
o Need transformation for each variable:

~107 trainable parameters in total
• Reproduces 

correlations even in 
ML b-tagging 
algorithm scores

• Currently covers: 
jets (real & fake), 
muons, electrons

• Newer version uses continuous flow matching
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CMS-NOTE-2023-003
Analysis

https://arxiv.org/abs/2402.13684
https://cds.cern.ch/record/2858890


One Step vs. End-to-End

• End-to-end models like FlashSim that produce analysis-level observables from generator input have 
massive utility: essentially eliminate statistical fluctuations

o …for end-stage analysis, where nothing is rapidly varying

• But accurate simulation is needed throughout the lifecycle of an experiment

 Models that target low-level simulated hits are more broadly applicable

o Complementary use cases for both approaches
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Reconstruction AnalysisGeneration Simulation Digitization Trigger

Changes O(1 year)
(geometry, physics models)

Changes O(1 second–1 month)
(calibrations, radiation damage, algorithms, …)

Changes O(1 year)
(mostly performed after 
data-taking finishes)

https://cds.cern.ch/record/2858890


Pileup: An Overlooked Case

• Viewed as a solved problem… but substantial room for improvement
o Generative ML could compress O(PB) samples into O(MB) model + random number generator & 

conditioning info → completely eliminate premixing resource usage (in exchange for training)
• Straightforward to repurpose detector simulation surrogates, but also possible improvements here
o Train on data and realize long-awaited data mixing?
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Digitization• “Classical” mixing: overlay nPU distinct
simulated minimum bias events per bunch crossing
on top of signal event → massively I/O intensive

• “Premixing”: perform overlay in advance, save hits 
after aggregation (digitized format)
o Leads to O(PB) samples that have to be served 

throughout the grid with very high availability
o Better than classical mixing, but still disk- and 

network-intensive



Future Colliders
• FCC-hh: ~100 km ring, √spp ≈ 100 TeV
o Expected pileup 1000: 2.5×105 > 100 MeV
o Significant escalation from previous slide
o More details in CERN-2022-002 (CDR)
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• Muon Collider: ~16 km ring, √sμμ ≈ 10 TeV
(≈70–150 TeV in √spp, arXiv:1901.06150)
o Beam-induced background: arXiv:2209.01318
 ~105 muon decays per meter
 ~108 photons and neutrons per crossing
 24 hours to simulate 1 event in Geant4

o Designing & optimizing machine-detector 
interface (e.g. tungsten nozzle) requires 
substantial intensive simulation

arXiv:2203.07964

https://cds.cern.ch/record/2842569
https://arxiv.org/abs/1901.06150
https://arxiv.org/abs/2209.01318
https://arxiv.org/abs/2203.07964


Computing for ML
• ML algorithms use a restricted set of operations

(mostly matrix multiplications)
o Natural and easy to accelerate on specialized coprocessors

• Most flexible approach: inference as a service
o Abstract away specific computing elements:

client makes request, server delivers
o Example: ParticleNet 10–100× faster on GPU vs. CPU
 Algorithm latency becomes essentially invisible

with asynchronous calls in offline processing
 Can batch across events for optimal GPU utilization

→ maximize throughput
• Demonstrated for CMS, protoDUNE, LIGO, analysis facilities
o Use CPUs, GPUs, FPGAs, TPUs, IPUs… with zero code changes!
o Optimally exploit new GPU-based High Performance Computing

(HPC) facilities
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https://arxiv.org/abs/2402.15366
https://arxiv.org/abs/2301.04633
https://arxiv.org/abs/2108.12430
https://arxiv.org/abs/2312.06838


Conclusion
• Growing usage of AI/ML methods for detector simulation
o Both generative models and non-generative classification/regression techniques are useful

• Increasing focus on resolving practical problems: improve both accuracy and computing time
o Implementing in common or experiment software frameworks
o Using ML at production scale – beyond proof of concept

• Applications throughout HEP
o Primarily investigated for collider physics so far
o Neutrino and astrophysics starting to see more adoption

• Diffusion models particularly powerful
o Techniques like flow matching poised to unify normalizing flows and diffusion models

• Many more novel applications than could be discussed here
o SIM reviews: arXiv:2203.08806, arXiv:2312.09597
o Overall: HEPML-LivingReview
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Background generated by SDXL 1.0 w/ 
prompt: “A GEANT4 simulation of a pion 
shower with energy 100 GeV in the 
Compact Muon Solenoid High Granularity 
Calorimeter at the CERN Large Hadron 
Collider, a particle physics experiment”

https://arxiv.org/abs/2203.08806
https://arxiv.org/abs/2312.09597
https://iml-wg.github.io/HEPML-LivingReview/


Backup



Projections

• Run 2: (full) simulation used ~40% (plurality) 
of grid computing resources for CMS & 
ATLAS [arXiv:1803.04165]
o 70% for LHCb! [LHCb-PUB-2022-010]

• Run 4+: limit to ~10–20%, while simulating:
o Complex detector upgrades
 e.g. CMS High Granularity Calorimeter

o More precise physics models
o More events to reduce statistical uncertainty
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LHCb CPU Usage ForecastCMSOfflineComputingResults CERN-LHCC-2022-005

https://arxiv.org/abs/1803.04165
https://cds.cern.ch/record/2802074
https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2019-018.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/


Processors: Old and New
• CPUs: Moore’s Law continues, but Dennard scaling

has broken down → stagnant performance/thread
 Heterogeneous revolution: rise of specialized 

coprocessors attached to general-purpose CPUs
o GPUs (SIMD), FPGAs (spatial computing), ASICs
o Growing taxonomy: even more specialized 

processors emerging, e.g. IPUs (MIMD for ML)
• Deep learning uses limited set of mathematical 

operations: perfect for acceleration on GPUs etc.
o Inference as a service: most general/abstract way

to offload tasks to coprocessors
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IPUs



Simulation Landscape
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“FullSim”
• Common software framework 

(i.e. Geant4)
o Experiments can provide 

additional code via user actions
• Explicit modeling of detector 

geometry, materials, interactions 
w/ particles

“FastSim”
• Usually experiment-specific 

framework
• Implement approximations: 

analytical shower shapes (e.g. 
GFLASH), truth-assisted track 
reconstruction, etc.

arXiv:hep-ex/0001020

M. Selvaggi

Delphes
• Ultra-fast parametric simulation
• Used for phenomenological 

studies, future projections, etc.

https://arxiv.org/abs/hep-ex/0001020
https://indico.cern.ch/event/397113/contributions/1837819/


Generative Models at Colliders: LHCb

• “Stacked GAN” approach to parameterize 
different detector aspects
o Cramér distance related to W1

• Tracking resolution: well reproduced in pT & φ

• Global PID 
variables also well 
reproduced:
o Top: K± vs. π±

o Bottom: μ vs. p
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LHCB-FIGURE-2022-004

https://cds.cern.ch/record/2806749


CaloDiffusion

• Base architecture: U-net
o Skip connections ensure no loss of information

• Linear self-attention layers applied to each 
convolutional ResNet block
o Allows dimensionality reduction in z to handle 

longitudinal correlations in showers
• + numerous geometric innovations (next slide)
• Cosine noise schedule for training
• Stochastic sampling algorithm for generation
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(M/N): # filters for datasets 1 & 2 / 3
Total parameters: ~520K / ~1.2M

• Objectives:
o Datasets 1 & 2: predict (normalized) noise
o Dataset 3: predict weighted average of noise 

and denoised image
• Aim for highest achievable quality first
o Then focus on improving speed
o Wrong answers can be obtained infinitely fast



• Particle showers are not invariant in r or z
o Provide r and z (layer) as extra per-pixel

channels (input features)
o Convolutions become conditional

Geometric Innovations
• Particle showers are invariant & periodic in φ
o Pad in φ so convolutions “wrap around”
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(source)

Shower image

Radial image

Layer image

 Conditional cylindrical convolutions
o Handle inherent features of particle detector geometry, distinct from rectangular images

https://indico.cern.ch/event/1159913/contributions/5062708/


Geometry Latent Mapping: GLaM

• Dataset 1 has different radial/angular bins in each layer
o Can’t directly apply convolutions, which require regular neighbor structure

• Learn forward and reverse embeddings to and from a regular geometry
o Simple matrices C (NxM) and D (MxN)
 C initialized to split or merge cells based on overlap between original and embedded geometries
 D initialized as Moore-Penrose pseudoinverse of C

• Inspired by “latent diffusion” approach
o But not necessarily lower-dimensional representation; actually higher-dimensional here
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Average Showers

• Top: Geant4; bottom: CaloDiffusion (dataset 1, photons)
o … or is it the other way around? Can you tell?
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[animated version]

https://www.dropbox.com/scl/fi/96j6yr4d4qedfv2au2ney/shower_evolution_final_v2.gif?rlkey=18v7j2fyfd57cqayd46ktjfmd&raw=1


Original CaloDiffusion: Areas for Improvement
• Deficit in total energy modeling

• Need 400 diffusion steps to get acceptable quality

o Still faster than Geant4 (~100s) w/ batching on GPU

• Fewer steps:

o Linear speed improvement

o But even less accurate in
this quantity
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