

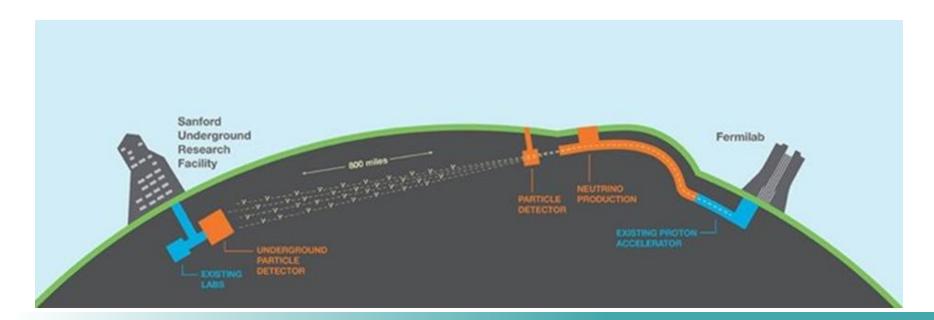
Advancement and Innovation for Detectors at Accelerators

Second Project Review meeting

Thursday 20 June 2024 CFRN

WP9

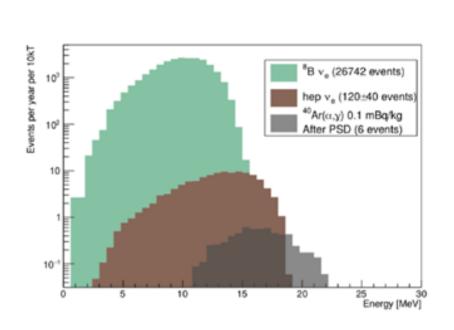
Cryogenic Neutrino Detectors

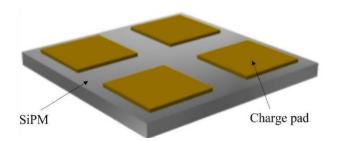

Dario Autiero and Andrzej M. Szelc

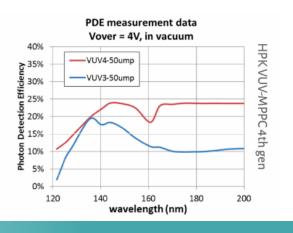
WP9: Cryogenic neutrino detectors:

- Focus on innovative developments in large cryogenic detector readout:
 - Charge readout with pixels
 - Charge readout with vertical-drift detectors
 - Readout of scintillation light.
- Applications geared towards DUNE and large-scale DM detectors.

Objectives

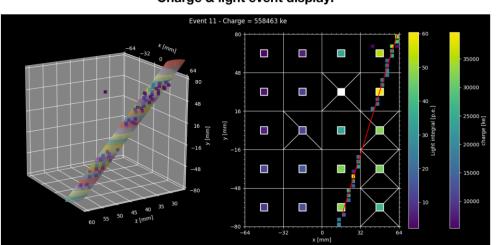


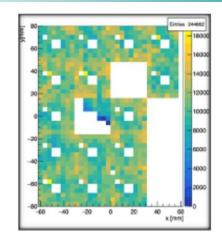

- Task 9.1: Coordination and Communication (CNRS-IP2I, Edinburgh)
- Task 9.2: Pixel Charge Readout (Manchester, Bern)
 - Optimized pixel tile pattern for the DUNE LAr far detector
 - Design and prototype for large scale tile-based anode plane
- Task 9.3: Vertical Drift Charge Readout (CNRS-IP2I, CNRS-IJCLab, CNRS-LAPP)
 - Novel Vertical Drift perforated anodes charge readout design evolving from the dual-phase charge readout stack
 - Development and tests of novel design of the Charge Readout Plane (CRP) integration surface of the Vertical Drift perforated anodes
 - Developments and tests of integrated cold electronics, new feedthrough chimneys design
 - Developments in associated digitization hardware and online data treatment
- Task 9.4: Light Readout (CIEMAT, INFN-MIB, Edinburgh)
 - Characterization of new photon detection methods, calibration devices and readout electronics
 - Implementation and characterization of a more efficient light collection system in NPO2/ProtoDUNE phase II (Xe doping and Wave-Length Shifting (WLS) combined with reflective foils)
 - Dissemination of R&D results and NP02/ProtoDUNE II light-collection performance (web site)



Results/highlights Pixels charge readout [T:9.2] (UNIMAN, UBERN)

- Pixels as an idea to replace wires
- Simultaneous charge and light readout with special Pixel-SiPM pads.
- Enables low-energy neutrino optimized LArTPC the SoLAr concept
- New generation VUV-sensitive SiPMs.



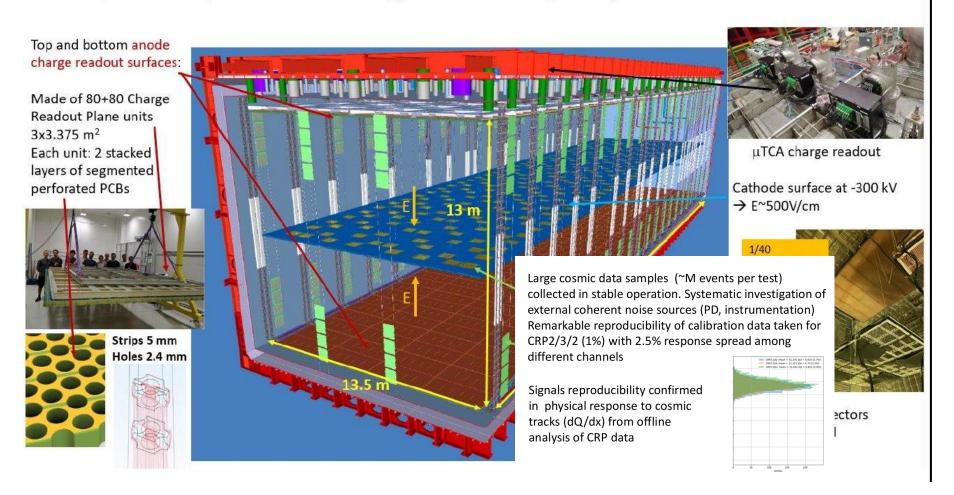


Results/highlights Pixels charge readout [T:9.2] (UNIMAN, UBERN)

- V2 prototype (July 2023)
- 30x30x30 cm³ volume
- 20 LArPix chips
- 64 Hamamatsu VUV SiPMS
- 10 days of data taking
- Cosmic rays + ⁶⁰Co

Charge & light event display!

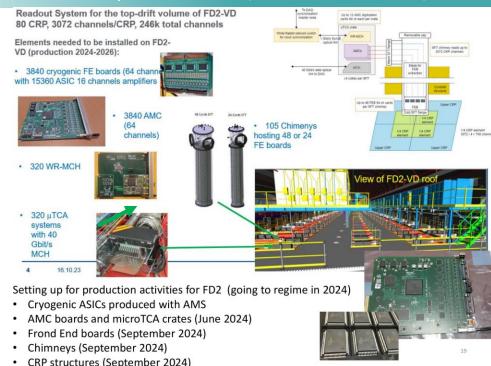
Hit map shows location of disabled pixels

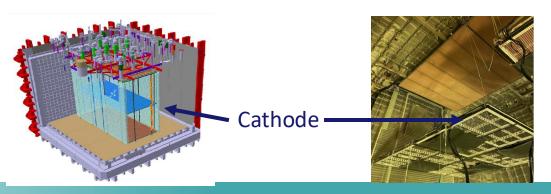

MS36, and D9.1 (M44)

 10-ton scale prototype proposed for Boulby (proposal submitted in May)

Results/highlights Vertical Drift [T: 9.3] (CNRS-IP2I, CNRS-IJCLab, LAPP)

Vertical Drift: novel and optimized LAr TPC technology, anodes based on segmented perforated PCB





- VD has transitioned into production phase for the DUNE FD
- Module-O/ProtoDUNE Vertical Drift: last Vertical Drift integration exercise before 2nd DUNE FD module construction -> completed in June 2023
- Detector will be filled (fall 2024, due lack of LAr) - main applications for reconstruction studies/development of cosmic and charged beam.

MS37,38 and 39, and D9.2 (M46)

Results/highlights Vertical Drift [T: 9.3] (CNRS-IP2I, CNRS-IJCLab, LAPP)

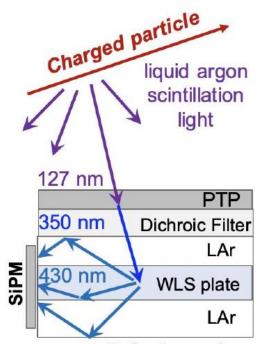
Results/highlights Light Readout [T:9.4] (CIEMAT, INFN-MIB, UEDIN)

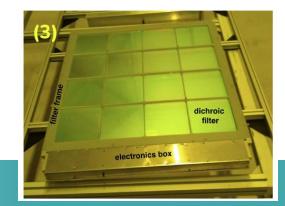
 Extensive tests of X-ARAPUCA devices for several experiments:
 SBND, DUNE-HD, DUNE-VD, ProtoDUNE-VD

SensL pTP X-ARAPUCA, OV 6 [V] 0.40 0.35 0.30 0.25 0.20 0.15 0.10

N. of photoelectrons

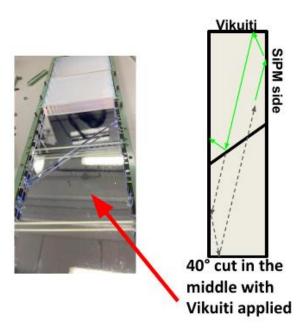
0.05

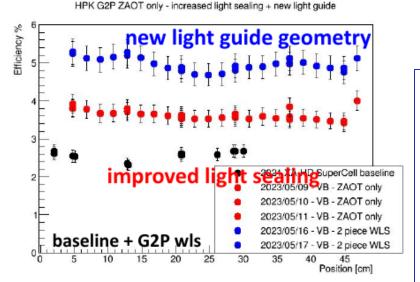

0.00



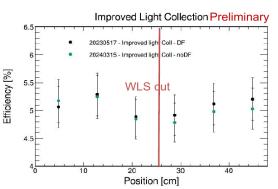
MS40, and D9.3 (M45)

Second Project Review meeting




Reflective surface cathode X-ARAPUCA

Results/highlights Light Readout [T:9.4] (CIEMAT, INFN-MIB, UEDIN)q


SBND @ FNAL, getting ready to run.
 Equipped with 38² m of TPB-coated foils.

Detection efficiency doubled!

- > Improved resolution

In New Geometry, removal of dichroic filters does affect efficiency

-> Big reduction in cost and production complexity.

Deliverables/Milestones

Milestones

MS#	Milestone Name	Lead beneficiary	Due Date (in months)	Means of verification
MS36	Pixel optimisation	40 - UNIMAN	23	Report (Task 9.2)
MS37	Status report on chimneys	8 - CNRS	22	Report (Task 9.3)
MS38	Status report on CRPs	8 - CNRS	23	Report (Task 9.3)
MS39	Status report on digitisation	8 - CNRS	33	Report (Task 9.3)
MS40	Large-scale WLS surfaces and SiPMs Tested	21 - INFN	22	Report (Task 9.4)

Good progress on the prototypes – excellent results from varios tests. Some switching to production mode.

New collaborations enabled by AIDAInnova

All WP 9 milestones completed.

Deliverables schedule is on track.

Deliverables

D #	Deliverable Name	Lead beneficiary	Туре	Due Date (in months)
D9.1	Large-scale Pixel Anode	40 - UNIMAN	Report	44
D9.2	Vertical Drift chimneys, digitisation, CRPs	8 - CNRS	Report	46
D9.3	R&D in LAr optical readout	29 - CIEMAT	Report	45