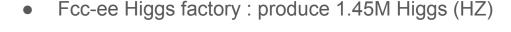
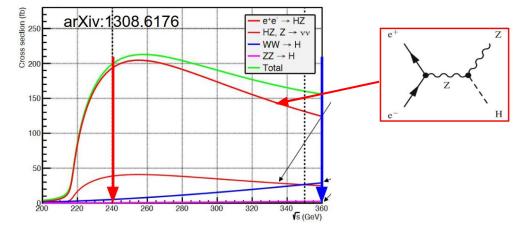
Color Singlet clustering

GNN based Reconstruction at FCC-ee


Thibault Gergaud (ENS - CERN)


Dolores Garcia (CERN)

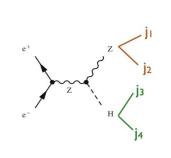
Michele Selvaggi (CERN)

FCC-ee

At FCC :

- Clean environment
- Relative small backgrounds, large S/B

ACKS : Michele Selvaggi, Dolores Garcia https://indico.cern.ch/event/1307378/contributions/5721015/attachments/2791532/4869200/Higgs_Top_Performance_FCCWorkshop_Jan2024.pdf


HZ decay mode

Z decay m(Z) = 91Gev :

- Z(II) ~ 10%
- Z(vv) ~ 20%
- Z(jj) ~ 70%

H decay m(H) = 125 Gev:

- H(bb) ~ 58 %
- H(gg) ~ 8%
- H(tautau) ~ 6%
- H(cc) ~ 2%
- H(ss) ~ 0.02%

- Z(vv/ll) final states:
 - "easy": 2 jets
 - from the Higgs decay
- Z(jj):
 - "hard": 4 jets
 - can originate from H or Z

Fully hadronic, HZ \rightarrow jjjj ~ 51%:

- Hardest
- Largest BR

ACKS : Michele Selvaggi, Dolores Garcia

https://indico.cern.ch/event/1307378/contributions/5724022/attachments/2791708/4868607/2024_02_01_FCC_lakovidis%20fullHadronic.pdf https://pdg.lbl.gov/2023/listings/contents_listings.html

Baseline approach

Jet flavour tagging

- "exclusive" Durham kt algorithm for N = 4
- determine dij between each pair of particles $d_{ij}=2min\left(E_i^2,E_i^2
 ight)\left(1-cos heta_{ij}
 ight)$
- recombine i, j pair with smallest dij, and update all distances
- stop when you have reached a predetermined number of jets (here N = 4)

• Jet pairing

matching jets to form Higgs and Z candidates

jet tagging returns probabilities for each jet to be of given flavor: P(u), P(d), P(g), P(b), P(s),..

ACKS : Michele Selvaggi, Dolores Garcia https://arxiv.org/pdf/1111.6097 (Cacciari, Salam, Soyez) https://arxiv.org/pdf/2202.03285 (Bedeschi, Gouskos, Selvaggi)

HZ decay mode

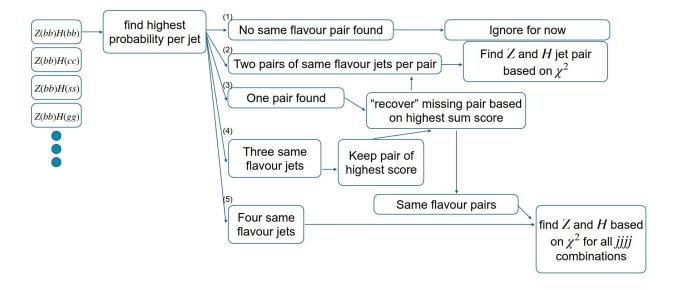
Off-diagonal:

e.g Z(bb)H(ss): requesting 2b-jets and two s-jets automatically "tags" the jets coming from the Higgs and the Z

vs. diagonal:

eg: Z(ss)H(ss): tagging does not help (25%)

	Н	bb	сс	dd	SS	uu	gg
z	proba	58	2	0	0,02	0	8
bb	15,2	8,816	0,304	0	0,00304	0	1,216
сс	11,8	6,844	0,236	0	0,00236	0	0,944
dd	15,2	8,816	0,304	0	0,00304	0	1,216
SS	15,2	8,816	0,304	0	0,00304	0	1,216
uu	11,8	6,844	0,236	0	0,00236	0	0,944
gg	0	0	0	0	0	0	0
					1.4%		


ACKS : Michele Selvaggi, Dolores Garcia

https://indico.cern.ch/event/1307378/contributions/5724022/attachments/2791708/4868607/2024_02_01_FCC_lakovidis%20fullHadronic.pdf https://pdg.lbl.gov/2023/listings/contents_listings.html

Baseline approach

- "exclusive" Durham kt algorithm for N = 4
- Jet flavour tagging (P(u, d, g, b, s,..))
- Jet pairing using Z and H mass constraints

$$\chi^2 = rac{\left(M_{rac{1}{2}} - M_H
ight)^2}{\sigma_H} + rac{\left(M_{rac{1}{2}} - M_Z
ight)^2}{\sigma_Z}$$

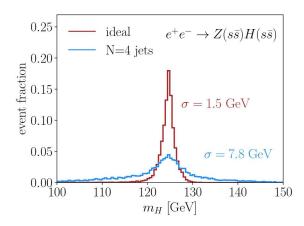

George lakovidis

https://indico.cern.ch/event/1307378/contributions/5724022/attachments/2791708/4868607/2024_02_01_FCC_lakovidis%20fullHadronic.pdf

Limitations

Loss in performance can be due to:

- Mis-clustering of soft particles leading to degraded resolution
- Miss matching of jets pairs



ACKS : Michele Selvaggi, Dolores Garcia

[1]Fujii, K., Grojean, C., Peskin, M. E., Barklow, T., Gao, Y., Kanemura, S., ... & Murayama, H. (2020). ILC study questions for snowmass 2021. arXiv preprint arXiv:2007.03650.. [2] Gallicchio, J., & Schwartz, M. D. (2010). Seeing in color: jet superstructure. *Physical review letters*, 105(2), 022001.

What can we gain?

factor ~4 of improvement available

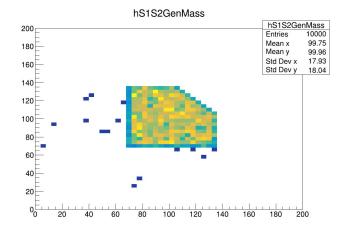
Possible solutions:

- Parameter tuning (generalise distance metric ?)
 - trial and error
- ML Learning distance metrics? piecewise continuous function, hard optimization problem
- ML end-to-end approach
 - classify each final state particle as originating from Z or H
 - possible because $\Gamma_{H} << \Gamma_{Z}$

 \rightarrow Color Singlet Clustering

ACKS : Michele Selvaggi, Dolores Garcia

[1]Fujii, K., Grojean, C., Peskin, M. E., Barklow, T., Gao, Y., Kanemura, S., ... & Murayama, H. (2020). ILC study questions for snowmass 2021. arXiv preprint arXiv:2007.03650.
 [2] Gallicchio, J., & Schwartz, M. D. (2010). Seeing in color: jet superstructure. *Physical review letters*, 105(2), 022001.


Clustering Color Singlets : dataset

Our training dataset:

- Simple case of two colors singlets (S1, S2) decaying to ssbar
- Uniform mass distribution of S1 and S2 (treat more general decay than HZ)
 - avoid the network "learning" the Higgs and Z mass
 - e.g. apply to ZZ or WW decays
- Stable final state particles from hadronisation (truth label: S1 or S2)
- No resolutions detectors effects

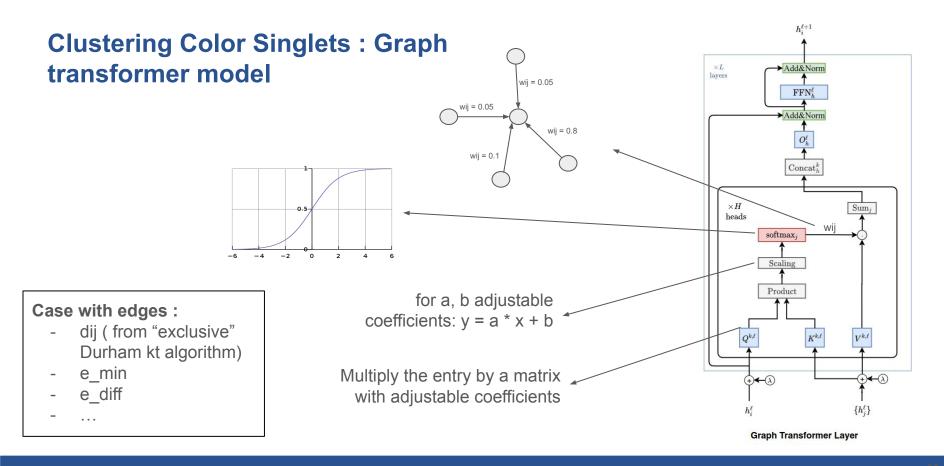
(px, py, pz)

(p, theta, phi)

only use final state particle kinematic properties

for an apple-to-apple comparison to jet clustering approach

Clustering Color Singlets : dataset


Characteristics of the graph :

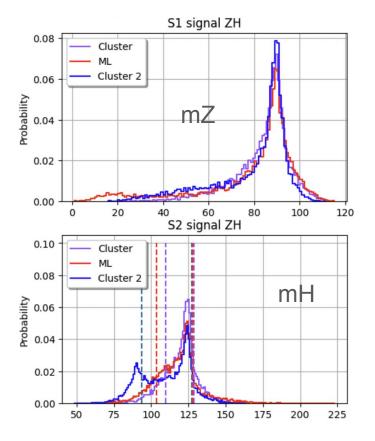
Nodes == final state particles :

- рх
- ру
- pz

- Nodes == final state particles with 3 features
- 3 features embedded in higher dimensional space R3 -> RM (M>3)
- Each node does message passing: it receives information from its neighbours

Clustering Color Singlets : Graph transformer model

Figure of merit : reconstructed mH and MZ

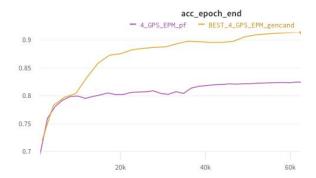

• Cluster : baseline approach with

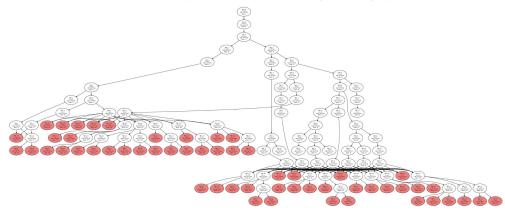
$$\chi^2 = rac{\left(M_{rac{1}{2}} - M_{H}
ight)^2}{\sigma_{H}} + rac{\left(M_{rac{1}{2}} - M_{Z}
ight)^2}{\sigma_{Z}}$$

- Cluster 2 : baseline approach with $\chi^2 = \left(M_{rac{1}{2}} M_Z\right)^2$
- ML-GNN approach

Results :

- ML is able to predict mH and mZ peaks
- However worse resolution (compared to cluster with kT exclusive clustering + jet pairing) on Higgs peak



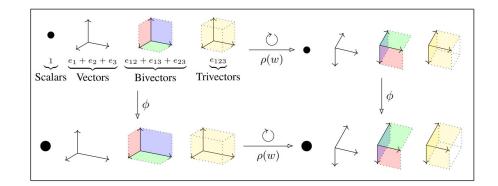

CSC- Possible improvements (I)

Could include extra information:

- The generation tree
 - Only labeling final state particles to S1 and S2
 - Graph wiring is important
 - Using information about the ordering (<tree structure) performance can be improved
 - Efforts to obtain MLE (A*, beam search...) all for small number of leaves [1,2]
- Additional features (PID, displacement ...)

A. Accuracy increase with new wiring, ordering by tree structure

B. Example tree


ACKS : Michele Selvaggi, Dolores Garcia

[1]Brehmer, J., Macaluso, S., Pappadopulo, D., & Cranmer, K. (2020). Hierarchical clustering in particle physics through reinforcement learning. *arXiv preprint arXiv:2011.08191*. [2] Greenberg, C. S., Macaluso, S., Monath, N., Dubey, A., Flaherty, P., Zaheer, M., ... & McCallum, A. (2021, December). Exact and approximate hierarchical clustering using A. In *Uncertainty in Artificial Intelligence* (pp. 2061-2071). PMLR.

Clustering Color Singlets -Possible improvements (I)

Advantages :

- Physical adapted
- Lorentz equivariant
- Respect Minkowski metrics

Conclusion

- The fully hadronic of HZ decay at FCC-ee is a challenge for the measurement of mH and mZ
- The baseline approach ("exclusive" Durham kt algorithm, jet flavour tagging, jet pairing) has limitations (mis-clustering, mis-pairing)
- Overcome them with end-to-end GNN approach for color singlet clustering
- Promising results for the Graph transformer model
- Working on new ideas

Thank you!