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● Flavour tagging essential for the e+e- 
program, e.g.:

● Higgs Sector:

● (HL-)LHC can access 3rd gen. couplings and 
a few of 2nd generation

● Future e+e-: Measure Higgs particle properties 
and interactions in challenging decay modes

o E.g. cc, 1st gen quarks/fermions, gg [?]

● Top quark physics [if E
CM

 sufficient]

● Precise determination of top properties
[mass, width, Yukawa]

● QCD Physics

● strong coupling (a
S
), event shapes ..

● modelling of hadronization, MC tuning, …
● ….

Physics motivation
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Basics of flavour tagging (b/c)

● Large lifetime
○ b (c) lifetime ~1 ps (~0.1ps)

○ b (c) decay length: ~500 μm 

○ (~5) mm for ~50 GeV boost

● Displaced vertices/tracks
○ Large impact parameters

○ Tertiary vertices when B hadron 

decays to C hadron

● Large track multiplicity
○ ~5 (~2) charged tracks/decay

● Presence of non-isolated e/μ
○ ~20 (10)% in B (C) decays

Detector constraints:
Need power pixel/tracking detectors

- Good spatial resolution
- As little material as possible
- Precise track alignment
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Input variables
● Comparison of input distributions for different jet flavors
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Constituent relative energy Impact parameter (d
0
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Basics of flavour tagging (strange)
● Large Kaon content

○ Charged Kaon as track:

■ K/pi separation
● TOF

● dEdx/dNdx

○ Neutral Kaons:

■ K
S
 → 𝞹𝞹

● Displaced 2 track 

vertex

● 4 photons 

■ K
L

● TOF vs n ? 

Detector constraints:

- timing detectors
- charged energy loss (gas/silicon)
- cherenkov detectors
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● Count number of primary ionization
clusters along track path 

● ToF results in good Κ/π separation at
low-momenta

● Modules added in Delphes

Particle ID: dN/dx and ToF
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● Jet representation: critical for powerful jet tagging algorithms
● In theory: A spray of particles produced by the hadronization of q and g

● Experimentally: A cone of reconstructed particles in the detector

● Reminder: Current and future experiments have / will have a PF-based event 
reconstruction

● Output: mutually exclusive list of particles

● Rich set of info/particle
o Energy/momentum, position

o Displacement, particle type

o timing

o …

● Until recently: Jet taggers based on human-inspired higher-level observables
● Inputs to cut-based or simple ML-based algorithms

● Move to particle-based jet tagging: i.e. exploit directly the full list of jet 
constituents (ReconstructedParticles) and new advances in ML
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Designing a Graph-based tagger

[O(50) properties/particle] 
x [~50-100 particles/jet]
 ~O(1000) inputs/jet
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Full list of input variables
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● Jet representation:  “Point Cloud”→ “Particle Clouds”
● Treat the jet as an unordered set of particles

● Algorithm design: Graph Neural Networks
● Particle cloud represented as a graph

● Each particle: node of the graph; Connections between particles: the edges

● Follow a hierarchical learning approach
● First learn local structures →  then move to more global ones

ParticleNet(-ee)
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ParticleNet@FCCee: b/c tagging

WP
Εff 
(b)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(c)

Loose 90% 2% 0.1% 2%

Medium 80% 0.7% <0.1% 0.3%

WP
Εff 
(c)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(b)

Loose 90% 7% 7% 4%

Medium 80% 2% 0.8% 2%

b-tagging c-tagging

better

betterLHC
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ParticleNet@FCCee: s/g tagging
strange-tagging

WP
Εff 
(s)

Mistag 
(g)

Mistag 
(ud)

Mistag 
(c)

Mistag
(b)

Loose 90% 20% 40% 10% 1%

Medium 80% 9% 20% 6% 0.4%

WP
Εff 
(g)

Mistag 
(ud)

Mistag 
(c)

Mistag 
(b)

Loose 90% 25% 7% 2.5%

Medium 80% 15% 5% 2%

better
better

gluon -tagging
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Impact of detector configurations
Strange tagging [PID] c-tagging [PIX layers]

Ideal from 
MC

better

better

● dN/dx brings most of the gain
additional gain w/ TOF (30ps)

● TOF (3ps): marginal improvement

● dN/dX + TOF(30ps) ~ perfect PID 

● Additional pixel layer 1 cm from 
beam pipe vs 1.5 cm:

● improved BKG rejection 
in c-tagging

● marginal/no improvement 
in b-tagging
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● ParticleNet-ee trained using Pythia 8 samples
● tested on Pythia 8 [solid lines]

● tested on WZ-Pythia6 [dashed lines]

● Modest dependence on choice of generator

● More parton showers coming up (Herwig, Sherpa…)

Robustness
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Tagger update(up and down)

Up -tagging Down-tagging

● Up vs Down discrimination seems possible thanks to jet charge
● 30% bkg eff at 50% signal (better than random coin toss)
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Analysis strategy in a nutshell for H→bb/cc/ss/gg

• Signal: H → jj ( j = b, c, s, g, 𝛕)

• Background:
•  WW/ZZ/Z, qqH, HWW, HZZ

• Key ingredients:
• Jets reconstruction

• N = 2 Durham kt exclusive algorithm

• ParticleNet jet tagger   (4 categories: b, c, s, g)

• Analysis:
1. Events pre-selection (lepton veto:orthogonalize with Z(ll)H analysis, cos theta),

2. Categorization based on tagger scores

3. Fit with floating 10% background normalisation uncertainty (to be constrained) and 4 signal 

strengths (Hbb, Hcc, Hss, Hbb)
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Analysis strategy in a nutshell for H→bb/cc/ss/gg

Event yields in the S-like highest purity category (with 122 < mvis < 128) for 7.2 ab-1

   Hgg :    1.1% 
   Hss :    150 % 
   Hcc :    2.7% 
   Hbb :    0.5% 

Results using only vvH channel: 

Hss Hgg Hbb Hcc Htautau HWW HZZ ZZ WW Zqq

N 10 10 0 0 0 8 10 300 150 80

S/B 1 1 0 0 0 1 1 1/30 1/15 1/10
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● Powerful jet flavour identification important for the e+e- physics program

● Sophisticated jet tagging algorithms developed for e+e- experiments 
● Striking improvement in tagging performance compared to previous tools

● allows us to explore more of the detector and event reconstruction potential

● Integrated in FCCSW [data preparation, training, validation, inference, analysis] and 
used in FCCee physics analyses

● Still room for improvement / other ideas to try:
● secondary tasks, secondary vertexing regression

● new higher order graph architectures

● improve explainability

● resilience to modelling (more generators)

● calibration (Z pole → ZH threshold extrapolation)

Summary
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ParticleNet in FCCSW 
Sample Generation for training 

● Generation of the samples in EDM4hep (whole event reconstructions, features 
for training not explicit)

● FCCAnalyses (wrapper RDataFrame)
● Per-event → per-jet structure
● 2 stages. 1: read edm4hep and extract features. 2: produce n-tuples one per class.
● final dataset: 5/7 classes and 106 events per class
● trained on gpus (A100 )

    Inference
● Inference in FCCAnalyses:

● load ONNX training files
● Extract hard vertex and perform jet clustering
● Extract jet constituents and compute observables
● Evaluate NN → output: one probability per category
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EDM4Hep Event ROOT Tree Jet ROOT Tree

PyROOT

Weaver (PyTORCH)

ONNX Model 

Training the model 

FCCAnalyses
 (RDF)

Jet Clustering
(JetClusteringHelper)

Jets 

Jet Constituents

Jet Constituent Data
(JetFlavourHelper)
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EDM4Hep Jet Tagging Scores 

ONNX Model 

Inference 

FCCAnalyses
 (RDF)

Jet Clustering
(JetClusteringHelper)

Jets 

Jet Constituents

Jet Constituent Data
(JetFlavourHelper)

Jet Inference
(JetFlavourHelper)
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Inference with FCCAnalyses
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Obtain input 
parameters

Jet clustering

Run inference

Loading model 
parameters

JetFlavourHelper

JetClusteringHelper


