### HIGHEST: high-gradient, high-temperature superconductors



This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

#### Sergio Calatroni, on behalf of the Collaboration.



#### A view on Linear Colliders



### The Compact Linear Collider (CLIC)



Accelerating structure prototype for CLIC: 12 GHz (L~25 cm)



The CLIC accelerator studies are mature:

- Optimised design for cost and power
- Many tests in CTF3, FELs, light-sources and test-stands
- Technical developments of "all" key elements

#### From: Steinar Stapnes



- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with highgradient room temperature RF cavities (~20'500 structures at 380 GeV),
   ~11km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.



### The ILC250 accelerator facility

#### Recent talks: eeFACT-I1 and eeFACTI2





#### From JoAnne Hewett, FCC week 2024

#### e<sup>+</sup>e<sup>-</sup> machine comparison: Physics potential

- Roughly equal number of Higgs produced for circular vs linear run plans
- Circular option enables precision EW Z and WW physics program
- Linear option enables extension to higher energies for Higgs self-coupling

#### Which is best?



19



6

#### Power and energy: future colliders



Linear collider studies predict roughly similar power consumption for equivalent machines (ILC vs CLIC)

From: Steinar Stapnes



## How can SC and NC have the same power consumption?

• Linear collider RF systems fall in two categories



SC niobium,  $Q_0 \approx 10^{10}$ , 35 MV/m, CW

$$R_s \propto 1/Q_0$$
  $P = \frac{1}{2}R_sH^2$ 



NC copper,  $Q_0 \approx 10^4$ , 100 MV/m, pulsed

- Despite the ~10<sup>6</sup> difference in quality factor, (~10<sup>3</sup> considering cryo efficiency), pulsing at low duty factor allows reducing the average consumption for NC accelerating structures down to the SC level – which cannot be effectively be pulsed
- We want to verify whether HTS in pulsed RF mode allows a further power gain compared to both Nb and Cu



### C3, a new kid on the block?

#### **Cold Copper**

Cryogenic temperature elevates performance in gradient

- Material strength is key factor
- Improved conductivity reduces material stress
- Increases rf efficiency

Operation at 77 K with liquid nitrogen is simple and practical

- Large-scale production, large heat capacity, simple handling
- Small impact on electrical efficiency\*

 $\begin{array}{l} \eta_{cp} = LN \; Cryoplant \\ \eta_{cs} = Cryogenic \; Structure \\ \eta_k = RF \; Source \end{array}$ 

$$\frac{\eta_{cs}}{\eta_k}\eta_{cp}\approx \frac{2.5}{0.5}[0.15]\approx 0.75$$



\*Assumes long pulse regime, no rf compression



Improvements in Q factor compared to copper could pave the way for energy savings

From: Emilio Nanni



## Background of HIGHEST



## HTS for the FCC-hh beam screen

- FCC-hh, a proposed 100 TeV p-p collider at CERN, with 16 T dipoles operated at 1.9 K
- A beam screen held at 50 K, to protect the dipoles from synchrotron radiation ~30 W/m/beam (LHC < 0.2 W/m)</li>
- HTS materials instead of copper in the FCC-hh beam screen, to improve beam stability (-> impedance) at 50 K
- Bunched particle beams produces RF fields, up to ~1 GHz
- Extremely challenging requirements:
  - HTS must operate at 50 K and 16 T
  - Critical fields  $Hc_2$ ,  $H_{irr} >> 16T$
  - o  $J_c > 25 \text{ kA/cm}^2 (2.5 \times 10^8 \text{ A/m}^2)$
  - Surface resistance R<sub>s</sub> better than for copper
  - Compatible with accelerator environment
    - Minimize dipole field distortion due to persistent currents
    - UHV compatible, low SEY, lifecycle assessment, etc..



16 Tesla !



### Two material choices

Manufacture the screen using REBCO tapes soldered to the screen

# Coat the inside of the screen with TI-1223 films





EASITrain















### Development of soldering technology





Solders based on Sn / Pb / Cu / Bi & In temperatures < 220°C







### Validation of RF performance (UPC - ICMAB)



In house developed 8.05 GHz cavity resonator compatible with 25mm bore 9 T magnet at ICMAB

**REBCO CCs outperform Cu at 50K and up to 9T**  $R_{s}$  is microstructure dependent

Puig et al, SuST 32, 094006 (2019)





**Figure 3.** Magnetic field dependence of the surface resistance at 8 GHz and 50 K. Up to 9 T, CCs'  $R_s$  outperforms that of copper.

Surface currents equivalent to 0.1 MV/m of a typical accelerating cavity



### First real cavity, f≈9 GHz

 We have developed a technology for applying 2D HTS tapes to 3D RF "RADES" cavities demonstrating the potential of HTS for RF applications J. Golm et al., IEEE TAS, Vol. 32, No. 4, (2022) 1500605



RADES cavity for axion searches



Magnetic field B (T)

### First published physics results with an HTS coated cavity

arXiv:2403.07790





### Other results from CAPP



2

CERN

KAIST

4

INFN (165)

EuBCO+APC

1.5

18<sup>TH</sup> PATRAS WORKSHOP

?

2

From: D. Ahn, CAPP. More info at Patras Workshop

Axion Haloscope (CAPP-MAX)

31

### Goals of HIGHEST



### ICMAB – UPC: testing at higher RF power



HTS coated conductors at 8 GHz (dielectric resonator) and 50 K

Patrick Krkotic, PhD dissertation, UPC Barcelona 2022



 There are very few measurements on HTS at high RF currents (mostly microstrip resonators). But physics is proven.



~10<sup>11</sup> A/m<sup>2</sup> RF current (microstrip resonator, 200 µm, 350 nm thick, 8 GHz)

Powell et al. Journal of Applied Physics 86, 2137 (1999)

For 1 µm thickness this is equivalent to  $10^5$  A/m ( $\cong 0.1$  T  $\cong 25$  MV/m) Entering the "high-gradient" range





**Fig. 4.1.** Temperature dependence at 19 GHz (*left part*) of the surface resistance a  $\emptyset 2''$  laser-ablated film (*diamonds*, "L49", [23]) and a  $\emptyset 1''$  DC-sputtered film (*circles*, "S145", [24]). The *right part* displays the field dependences  $R_s(B_s)$  of both films at the temperatures indicated by *arrows* in the left part. *Filled (open) symbols* refer to the laser-ablated (sputtered) films.

- T. Kaiser: Dissertation, University of Wuppertal, Report WUB-DIS 98-13 (1998).
- 24. T. Bollmeier, W. Biegel, B. Schey, B. Stritzker, W. Diete, T. Kaiser, G. Müller:



**Fig. 4.31.** Anomalous microwave field dependences  $R_{\rm s}(B_{\rm s})$  at 19 GHz for the two DC-sputtered films S178 (T = 77 K, *circles*) and S373 (T = 4.2 K (*squares*), 30 K (*triangles*) and 50 K (*diamonds*)) [23].

From: M. Hein, "High-Temperature-Superconductor Thin Films at Microwave Frequencies" (Springer Tracts in Modern Physics, 155)



### High-gradient testing at SLAC – supported by I.FAST IIF

- "Mushroom" cavity. Can achieve H<sub>peak</sub> of about 360 mT 2.9x10<sup>5</sup> A/m (equivalent to ~80 MV/m in a standard accelerating cavity) using 50 MW XL-4 Klystron at 11.4 GHz.
- Zero E-field on the sample
- Maximum H-field on the sample
- Sample accounts for  $\frac{1}{3}$  of total cavity loss







#### Goal: demonstrate and qualify high-gradient pulsed operation of HTS, at cryo-temperatures



## Work plan from 4/2023 to 4/2025

|                                                                                | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 |
|--------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|
| WP 1 (CERN)                                                                    |    |    |    |    |    |    |    |    |
| Coordination activities                                                        |    |    |    |    |    |    |    |    |
| Samples and substrates procurement                                             |    | M1 |    |    |    |    |    |    |
| RF low power characterization of segmented cavities (small tapes)              |    |    |    |    | D1 |    |    |    |
| Final report                                                                   |    |    |    |    |    |    |    | D2 |
| WP 2 (KCT)                                                                     |    |    |    |    |    |    |    |    |
| Design and fabrication of sample holder system                                 |    |    |    | M1 |    |    |    |    |
| HTS coating of large samples                                                   |    |    |    |    |    |    |    | D1 |
| WP3 (CSIC-ICMAB)                                                               |    |    |    |    |    |    |    |    |
| Coating on discs and segmented cavities for benchmarking (small tapes)         |    |    |    | D1 |    |    |    |    |
| Measurement of superconducting properties of large size tapes                  |    |    |    |    |    |    |    | D2 |
| SLAC supporting partner                                                        |    |    |    |    |    |    |    |    |
| RF high power characterization of 3D coated HTS discs in their mushroom cavity |    |    |    |    |    |    |    |    |



### Segmented cavities

CERN Segmented cavity for axion detection





SLAC Segmented cavity for RF pulse compressor



## Industrial application prospect

- At the end of this study, we aim at consolidating TRL4.
- Prototype pulse compressor with SLAC will demonstrate TRL6.
  - Timescale: 2-3 years after completion of this study
  - Need a further round of funding
  - This will include the design, fabrication and coating, and its validation in a high-power RF bench test bench.
- Future accelerator projects will drive achieving further TRLs and drive commercialization.
  - Industry will be involved for construction of devices
  - Other companies may be involved for hardware manufacturing





## Addressing the European Green Deal



New-generation collider linacs are expected to use hundreds of MW of electricity
 Energy savings from HTS are in line with current policies of societal impact minimization

FAST



### Resources and budget

#### • CERN:

- Provided resources: two senior physicist (scientific coordination, 0.2 FTE) and one senior Fellow (follow up, measurements, 0.5 FTE)
- Requested resources: 10 kEUR (sample manufacturing)
- KCT:
  - Provided resources: one senior scientist (design, procurement, coating, 1 FTE)
  - Requested resources: 100 kEUR (80 kEUR manpower for coating operations, 20 kEUR sample holder manufacturing)
- CSIC-ICMAB:
  - Provided resources: one senior scientist (0.2 FTE), and one PhD student (0.5 FTE)
  - Requested resources: 50 kEUR (40 kEUR PhD student and manpower for coating and characterization work, 10 kEUR consumable)

Ratio for the requested IIF funds: 120 kEUR personnel and labour / 40 kEUR material

 Final deliverable is a report on the demonstrated achieved performance, and on the prospects for scalability to accelerator-scale RF devices.



## Budget table

|            | Manpower | Materials | Total    |
|------------|----------|-----------|----------|
| CERN       |          | 10 kEUR   | 10 kEUR  |
| KCT        | 80 kEUR  | 20 kEUR   | 100 kEUR |
| CSIC-ICMAB | 40 kEUR  | 10 kEUR   | 50 kEUR  |
|            |          |           | 160 kEUR |



## A possible future ?



### Muon Collider





- Muon collider → potential short cut to the energy frontier
  - Multi-TeV collisions in next generation facility
  - Combine precision potential of e<sup>+</sup>e<sup>-</sup> with discovery potential of pp
  - High-flux, TeV-scale neutrino beams for nuclear & BSM physics
- Bright muon beams are required
  - Protons onto a target to make pions
  - Pions are captured and decay to muons
  - Muon beam is cooled to get to high brightness
- Cooling time must be competitive with muon lifetime
  - Ionisation cooling



| Muons/bunch                    | N                         | $10^{12}$ | 2.2   |  |
|--------------------------------|---------------------------|-----------|-------|--|
| Repetition rate                | $f_r$                     | Hz        | 5     |  |
| Beam power                     | $P_{coll}$                | MW        | 5.3   |  |
| RMS longitudinal emittance     | $\varepsilon_{\parallel}$ | eVs       | 0.025 |  |
| Norm. RMS transverse emittance | $\varepsilon_{\perp}$     | μm        | 25    |  |

From: Chris Rogers



### Muon collider

• Muon cooling system requires RF cavities operating at high-gradient AND in a strong magnetic field.



- Normal conducting copper, possibly cryo: <u>baseline option</u>
- A dream: High-Temperature Superconductors ?



- No data exist for modern HTS at high-gradient RF (either samples or cavities): experiments needed
- Fabrication technologies for real cavities must be developed: wider soldered tapes within the iFAST collaboration "HIGHEST"
- Eventually, develop a direct HTS coating technique on copper





### High-temperature Superconductors



### Superconductors zoo



By PJRay - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46193149



### Zoo of superconductors

 $J_c$  may vary of orders of magnitude.  $H_{c2}$  has much smaller variation.

YBCO most promising candidate

NbTi – NbTiN possible candidates at B < 10T

 $Nb_3Sn$  for B < 15 T



https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots



### Zoo of superconductors

Pinning force



https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots





 $J_{\rm C}$  decrease is guiding the development of Nb/Cu films

#### Rationale:

- Results from HIE-ISOLDE and bulk Nb
- Modelling of losses as hysteretic losses from RF fluxons penetration

Existing HTS Coated Conductors might not be the best choice at high-gradient RF, being optimized for flux pinning

From: Carlota Pereira Carlos



### **REBCO** coated conductors

#### Scheme of Coated Conductor (CC)



CuO2

Planes

• 0 • Cu

Ba

- Buffer layers allow biaxial epitaxial REBCO growth
- Metallic substrate makes tape ductile

Artur Romanov, PhD dissertation, UA Barcelona 2022



- Charge transport in CuO<sub>2</sub> planes
- High anisotropy
- Extreme sensitivity to oxygen content
- Large  $\lambda_L(0K) \approx 150 \ nm$  and small  $\xi(0K) \approx 2 \ nm$

**REBCO crystal structure** 

O (1)

O (2)

O (3)

CuO Chains

O (4)



#### Vortex in type II SC



Abrikosov lattice



Distribution into hexagonal lattice in homogenous material.

Artur Romanov, PhD dissertation, UA Barcelona 2022

with vortex penetration.



### Vortex pinning

#### Lorentz-like force provokes vortex movement

#### Defects: Strategy to pin vortices



Scales with current density and magnetic field:  $\vec{F}_L = \vec{J} \times \vec{B}$ 

#### Critical current density $\vec{J}_c$ :

 $\vec{F}_P = \vec{J}_C \times \vec{B}$ 

The maximum value of *J* without moving the lattice, without presenting resistance.



#### **Defect landscape:**

- 0D: Impurity atoms, interchanged atoms
- 1D: Dislocations, columnar defects
- 2D: Twin boundaries, grain boundaries
- 3D: Nanoparticles, associated strained regions

Artur Romanov, PhD dissertation, UA Barcelona 2022



### Various producers of CCs







#### CCs differ in architecture and REBCO microstructure.

Artur Romanov, PhD dissertation, UA Barcelona 2022



|                                                          | BRUKER             | 🌈 Fujikura                | <b>SUNAN</b>   | SuperOx                              | SuperPaver'        | THEVA          |
|----------------------------------------------------------|--------------------|---------------------------|----------------|--------------------------------------|--------------------|----------------|
| <i>Re</i> Ba <sub>2</sub> Cu <sub>3</sub> O <sub>7</sub> | Y                  | Gd   Eu                   | Gd             | Gd   Y                               | { Y,Gd }           | Gd             |
| Thickness [µm]                                           | 1.6                | 1.8   2.5                 | 1.6            | 0.9   3.0                            | 1.5                | 3.0            |
| Nano-inclusion                                           | BaZrO <sub>3</sub> | none   BaHfO <sub>3</sub> | none           | none   Y <sub>2</sub> O <sub>3</sub> | BaZrO <sub>3</sub> | none           |
| Technology                                               | PLD                | PLD                       | RCE            | PLD                                  | MOVCD              | EB-PVD         |
| Substrate                                                | Stainless Steel    | Hastelloy C276            | Hastelloy C276 | Hastelloy C276                       | Hastelloy C276     | Hastelloy C276 |
| Thickness [µm]                                           | 100                | 75   50                   | 100            | 60   40                              | 50                 | 100            |
| Stabilizer [µm]                                          | e.p. 25            | lam. 75                   | e.p 20         | e.p. 10                              | e.p 20             | e.p. 20        |
| <i>T<sub>C</sub></i> [K]                                 | 85                 | 94   92                   | 94             | 94                                   | 91                 | 92             |

Patrick Krkotic, PhD dissertation, UPC Barcelona 2022



#### Some theory background: fluxon motion in RF



Gittleman and Rosenblum: Phys Rev. Lett. 16, 734 (1966) Calatroni and Vaglio, IEEE Trans. Appl. Supercond. 27 (2017) 3500506 Coffey, Clem PRL 67, 386 (1991) Brandt PRL 67 2219 (1991) Silva et al, PRB 78, 094503 (2008)



### RF when an external magnetic field is present

- Vortex lattice
  - $\circ$  cylindrical normal conducting regions
    - $\approx$  tens of nm diameter
  - $\,\circ\,$  Each vortex carries one flux quantum
- Apply RF Current
  - $\circ$  Motion of vortices  $\rightarrow$  dissipation
    - $m\ddot{x} + \eta\dot{x} + kx = J_{RF}\Phi_o$
    - The motion of the rigid vortex lattice behaves as an harmonic damped oscillator with quadratic potential

$$\eta = \frac{\phi_o B_{c2}}{\rho_n} \qquad k = \frac{2\pi J_c \phi_0}{d} \qquad \omega_o = \frac{k}{\eta}$$

Patrick Krkotic, PhD dissertation, UPC Barcelona 2022

Gittleman and Rosenblum: Phys Rev. Lett. 16, 734 (1966) Calatroni and Vaglio, IEEE Trans. Appl. Supercond. 27 (2017) 3500506 Coffey, Clem PRL 67, 386 (1991) Brandt PRL 67 2219 (1991) Silva et al, PRB 78, 094503 (2008)



• Vortex pinning



Simplified model valid for estimates and scaling

#### • Artificial pinning centres

### Coating process I



FUTURE CIRCULAR COLLIDER

Developed in the context of FCC-hh impedance reduction by coating the beam screen with HTS tapes





### Coating process II





#### REBCO scaled to 1 GHz at 50 K



Romanov et al, SciRep 10:12325 (2020)

For HTS Rs scales as  $f^2$ For Cu Rs scales as  $f^{1/2}$ 

# A parallel-plate resonator is being commissioned to test samples at ~1 GHz



UPC

CommSensLa



Will demonstrate real experimental frequency scaling on samples



### Surface impedance: the key

 $\tau$  Risetime of beam instabilities

$$\frac{1}{\tau} \propto -\operatorname{Im}|\Delta \omega| \propto \frac{I_b M}{EL} \operatorname{Re}(Z_T) \qquad \operatorname{Re}(Z_T) \Rightarrow \frac{R c}{\pi b^3 f} R_s = \frac{R c}{\pi b^3 f} (\rho)_b \pi f$$

$$Z_T \operatorname{Transverse impedance (property of the beam)}$$

$$R_s \operatorname{Surface resistance (property of the surface)}$$
r: instabilities rise-time  
Ao: betaron tune-shift  
 $J_5$ : bunch current  
M: number of bunches  
E: beam energy  
L: bunch length  
R: accelerator radius  
c: speed of light  
b: vacuum chamber radius  
f: wakefields frequency  
p: electrical resistivity  
What could be  
better than copper  
at 50 K?



### New kid on the blocks: the C3 study @ SLAC

More info here

8 km footprint for 250/550 GeV CoM  $\Rightarrow$  70/120 MeV/m

Large portions of accelerator complex compatible between LC technologies

- Beam delivery / IP modified from ILC (1.5 km for 550 GeV CoM), compatible w/ ILC-like detector
- Damping rings and injectors to be optimized with CLIC as baseline
- Cryogenically cooled 77 K (liquid nitrogen)

| Collider                   | $C^3$         | $C^3$      |
|----------------------------|---------------|------------|
| CM Energy [GeV]            | 250           | 550        |
| Luminosity $[x10^{34}]$    | 1.3           | 2.4        |
| Gradient $[MeV/m]$         | 70            | 120        |
| Effective Gradient [MeV/m] | 63            | 108        |
| Length [km]                | 8             | 8          |
| Num. Bunches per Train     | 133           | 75         |
| Train Rep. Rate [Hz]       | 120           | 120        |
| Bunch Spacing [ns]         | 5.26          | 3.5        |
| Bunch Charge [nC]          | 1             | 1          |
| Crossing Angle [rad]       | 0.014         | 0.014      |
| Site Power [MW]            | $\sim \! 150$ | $\sim 175$ |
| Design Maturity            | pre-CDR       | pre-CDR    |

#### C<sup>3</sup> Parameters

#### C<sup>3</sup> - 8 km Footprint for 250/550 GeV (to scale)



Cooling allows for increase in accelerating gradient, and savings in RF power infrastructure

#### From: Emilio Nanni



## Flux pinnining

• Typical SRF accelerator cavities are made of niobium



Strong magnetic shielding needed



Limited or no magnetic shielding

- Effect of external magnetic field on SRF accelerating cavities is mostly due to flux pinning, weak pinning in bulk Nb and strong in Nb/Cu
- Earth magnetic field should not be an issue for HTS (to be verified)



### HTS tape at 8 GHz (dielectric resonator) and 50 K



Patrick Krkotic, PhD dissertation, UPC Barcelona 2022



#### Effect of magnetic field: fluxon losses in RF

#### Surface resistance, reactance due to vortex motion



Case  $f < f_o$ 

$$R_{f} = \frac{\rho_{n}}{2\lambda} \frac{B_{o}}{B_{c2}} \frac{f^{2}}{f_{0}^{2}} \qquad B_{0} \square B_{c2}$$
$$R_{f} = \frac{R_{n}}{\sqrt{2}} \sqrt{\frac{B_{o}}{B_{c2}}} \left(\frac{f}{f_{0}}\right)^{3/2} \qquad B_{0} \square B_{c2}$$

$$f_o(B_o) = \frac{\omega_o(B_o)}{2\pi} = \frac{\rho_n \sqrt{B_o} J_c(B_o)}{\sqrt{\varphi_o} B_{c2}}$$

To maximize  $f_0$  and minimize fluxon losses we need high  $J_c$  materials



## Predicted surface resistance of HTS in 16 T field

| YBCO    | T <sub>c</sub> =92K  | T=50K | B <sub>0</sub> =16T | J <sub>c</sub> (50,16)=7.5x10 <sup>9</sup> Am <sup>-2</sup> | B <sub>c2</sub> (50)=40T | ρ <sub>n</sub> =60μΩcm | f <sub>0</sub> =10GHz |
|---------|----------------------|-------|---------------------|-------------------------------------------------------------|--------------------------|------------------------|-----------------------|
| TI-1223 | T <sub>c</sub> =125K | T=50K | B <sub>0</sub> =16T | J <sub>c</sub> (50,16)=1x10 <sup>10</sup> Am <sup>-2</sup>  | B <sub>c2</sub> (50)=80T | ρ <sub>n</sub> =80μΩcm | f <sub>0</sub> =14GHz |





## Cryogenic losses: SRF aimed at energy saving compared to NRF



| Power consumption for 1 W @ 77 K  | 13 W  |
|-----------------------------------|-------|
| Power consumption for 1 W @ 20 K  | 50 W  |
| Power consumption for 1 W @ 4.2 K | 230 W |
| Power consumption for 1 W @ 1.9 K | 920 W |

Thanks to T. Koettig, CERN



### Low-power RF measurements

 An improvement larger than x10 compared to copper (Rs=8mΩ) has been measured on samples of tapes (8 GHz) at low RF power



Adapted from Romanov et al, Sci. Rep. (2020) 10:12325









## First results at SLAC, at low gradient

#### Two HTS measurements, after calibration measurements with Cu and Nb

Soldered REBCO-CCs on copper (Fujikura by CSIC-ICMAB)

Directly grown REBCO on MgO and on copper+MgO (CERACO)







### Preliminary SLAC results at high-gradient I



#### From: Mitch Schneider



### Preliminary SLAC results at high-gradient II

#### Measurements of YBCO on MgO

Tested YBCO on MgO sample for comparison, appeared to reach quench limit sooner



SLAC Shaded area: change from 100 W to 1.6 kW of forward power

From: Ankur Dhar



## First device validation – supported by I.FAST Innovation Fund

- Next goals: develop large-size tapes (50 mm wide) in collaboration with KCT, to be first tested on discs at SLAC. Two-years plan funded by IIF
- (Ideally: REBCO coating directly on 3D objects)
- Device validation: X-band pulse compressor (SLAC) as first "real" RF device



Coating will be performed by CSIC-ICMAB



### Axion cavity as earlier demonstrator

- Approach being validated also for axion detection cavities in RADES collaboration
   having a similar geometry
- Copper body manufactured at Mainz University, adapted to 12 mm wide coated conductors, coated by CSIC-ICMAB





## Summary of milestones and deliverables: WP2 KCT

- M1 Design and fabrication of sample holder system (due 3/2024). Achieved well in advance
- D1 HTS coating of large samples (due 3/2025). On track and well under way, first 40 mm wide tape already coated (final goal is 50 mm, but 40 mm is enough for our final goal)



for HTS tapes

FAST

alatroni - CERN | HTS at high-gradient

62

## Summary of milestones and deliverables: WP3 CSIC

- D1 Coating on discs and segmented cavities for benchmarking (small tapes) (due 3/2024). Achieved for discs, already high-power tested at SLAC (presented at EUCAS 2023 / IPAC 2024) waiting for readiness of segmented cavity
- D2 Measurement of superconducting properties of large size tapes (due 3/2025). On track and well under way, first 40 mm wide tape already characterized



63

#### First tests of 40 mm tape

#### Copper disc coated with 12 mm tapes



FAST

## Possible practical implementation of HTS tape-coated cavities

How could a future cavity look like? Bimetallic cavities



Joints at low-current regions are standard practice even in SRF cavities (ie QWRs) Segmentation at zero-current region is possible, see device being designed at SLAC

