Waist Lumi Studies and Plans

Leon van Riesen-Haupt, Peter Kicsiny, Michael Hofer, Yi Wu

Status and Plans

- Over the past year tools (Xsuite) have reached a maturity that allows for multiple effects at the same time
 - Beam-beam (and radiation)
 - Full lattice description with radiation and errors
 - Solenoid Kicks and thick solenoid
- Emittance and dynamic aperture methods well tested and documented
- Tuning tools available:
 - Lattices with errors and corrections
 - IP tuning knobs
 - Relaxed optics
- Large potential for realistic and complete studies
 - Some ideas collected with Tatiana, Oide-San and Ohmi-San

Beam-Beam	Lattice Errors	Solenoid	Scan:	Observe:
WS	Effective	None	 Error size (emit) Phase between IR Beta* 	 Emittance Dynamic Aperture (Lifetime?)
WS	None (V wiggler)	Helmut's kicks	Lattice emittance (wiggler)Beta*	EmittanceDynamic Aperture
None	None (V wiggler)	Xsuite Sol (+kickers)	Lattice emittance (wiggler)Beta*	EmittanceDynamic Aperture
WS	None (V wiggler)	Xsuite Sol (+kickers)	Lattice emittance (wiggler)Beta*	EmittanceDynamic Aperture
WS	Effective	Xsuite Sol (+kickers)	 Lattice emittance (wiggler) Phase between IR Beta* 	EmittanceDynamic Aperture
None	"Realistic" (Yi Wu)	None	 Beta* and waist 	DAEmittanceLuminosity
None	"Realistic" (Yi Wu)	None	- IR optics correction	DAEmittanceLuminosity
WS	"Realistic" (Yi Wu)	None	 Beta* and waist 	DAEmittanceLuminosity

Dynamic Aperture with Beam-Beam

• Beam-beam has very little impact on DA without errors

Dynamic Aperture with Beam-Beam

Beam-beam has very little impact on DA without errors

tt DA with radiation (no BB)

tt DA with radiation (BB)

Dynamic Aperture with Beam-Beam

- Beam-beam has very little impact on DA without errors
- Dynamic aperture with effective errors and beam-beam problematic
 - Very small effective alignment errors $\sim 10^{-9}$ m
 - No closed solution found not even for twiss
 - Need correction of
 - Orbit correction
 - Beta imbalances between the two IPs
 - Perhaps with beta knobs

Waist Scans Method

- Waist knobs created using cpymad
 - Modulate quadrupole strengths and record change in waist and beta at waist to create response matrix ${\it M}$
 - Construct knobs using SVD $M = USV^T$, $M^{-1} \approx VS^{-1}U^T$, $k = M^{-1}o_{target}$
 - Construct circuits for magnets and redefine:

```
BX_KNOB_1 = 0;
BY_KNOB_1 = 0;
WX_KNOB_1 = 0;
WY_KNOB_1 = 0;
qb6.4, K1 := 0.00902423868442456*(1 + BX_KNOB_1*(0.34534295362097844) + BY_KNOB_1*(0.001365749575319445) + WX_KNOB_1*(0.0005419790606854425) +
WY_KNOB_1*(0.006355389543450406));
```

- Create lattices for scan:
 - Load lattice in MADX
 - Load redefinitions of quadrupole magnets
 - Set knob values
 - Slice and convert to X-Suite

Luminosity Studies

- Create lattices with different waist knob settings
 - Changing parameters in IP1 only
- Install beam-beam element in one IP
 - Luminosity table averages over all four IP's
 - Constructed with baseline parameters and 100 slices, flag_luminosity=1

line.discard_tracker()
line.insert_element('bb.1', el_beambeam_b1.copy(), at_s=tab['s', 'ip.1'])
tab = line.get_table()
line.build_tracker(_context=context, use_prebuilt_kernels=False)

• Compute luminosity over 300 turns with 100,000 macro particles

el beambeam b1 = xf.BeamBeamBiGaussian3D(context=context, config_for_update = None, other_beam_q0=1, phi=15e-3, alpha=0, min sigma diff = 1e-28, slices other beam num particles = slicer.bin weights * int(beam_params['BUNCH_POPULATION']), slices other beam zeta center = slicer.bin centers, slices other beam Sigma 11 = n slices*[sigma x**2], slices other beam Sigma 22 = n slices*[sigma px^{*2}], slices other beam Sigma 33 = n slices*[sigma y**2], slices other beam Sigma 44 = n_slices*[sigma_py**2], slices_other_beam_Sigma_12 = n_slices*[0], slices other beam Sigma 34 = n slices*[0], flag luminosity=1,

Results

- Statistical noise
 - More particles might help
 - Need to check which turns are averaged
- Clear trend visible
 - Much more sensitive in y than in x
 - As expected since smaller beta in y

Realistic Errors and Corrections

- Obtained corrected Z lattice by Yi Wu
 - 30 µm alignment errors in arcs
 - Orbit corrections
- Creation of Xsuite lattice:
 - Load lattice into cpymad
 - Apply kicker strengths and load errors
 - Convert to Xsuite, allowing thick elements and alignment errors

line = xt.Line.from_madx_sequence(madx.sequence['FCCEE_P_RING'],
allow_thick=True, enable_align_errors=True)

• Slice in Xsuite

line.slice_thick_elements(

slicing_strategies=[

Slicing with thin elements

xt.Strategy(slicing=xt.Teapot(1)), # (1) Default applied to all elements

xt.Strategy(slicing=xt.Teapot(4), element_type=xt.Bend), # (4) Selection by element type

xt.Strategy(slicing=xt.Teapot(4), element_type=xt.Quadrupole), # (4) Selection by element type

xt.Strategy(slicing=xt.Teapot(4), element_type=xt.Sextupole), # (4) Selection by
element type

xt.Strategy(slicing=xt.Teapot(5), name='^gf.*'), # (5) Selection by name pattern xt.Strategy(slicing=xt.Teapot(5), name='^qd.*'), # (5) Selection by name pattern xt.Strategy(slicing=xt.Teapot(5), name='^gfg.*'), # (5) Selection by name pattern xt.Strategy(slicing=xt.Teapot(5), name='^qdq.*'), # (5) Selection by name pattern xt.Strategy(slicing=xt.Teapot(5), name='^ql.*'), # (5) Selection by name pattern xt.Strategy(slicing=xt.Teapot(5), name='^qs.*'), # (5) Selection by name pattern xt.Strategy(slicing=xt.Teapot(10), name='^qb.*'), # (10) Selection by name pattern xt.Strategy(slicing=xt.Teapot(10), name='^qq.*'), # (10) Selection by name pattern xt.Strategy(slicing=xt.Teapot(10), name='^qh.*'), # (10) Selection by name pattern xt.Strategy(slicing=xt.Teapot(10), name='^gi.*'), # (10) Selection by name pattern xt.Strategy(slicing=xt.Teapot(10), name='^gr.*'), # (10) Selection by name pattern xt.Strategy(slicing=xt.Teapot(10), name='^qu.*'), # (10) Selection by name pattern xt.Strategy(slicing=xt.Teapot(10), name='^gy.*'), # (10) Selection by name pattern xt.Strategy(slicing=xt.Teapot(50), name='^qa.*'), # (50) Selection by name pattern xt.Strategy(slicing=xt.Teapot(50), name='^qc.*'), # (50) Selection by name pattern xt.Strategy(slicing=xt.Teapot(20), name='^sy.*'), # (50) Selection by name pattern

Results

- Tracked 2500 turns
- Plot log(turn survived)
- Significantly lowered DA
 - Very irregular beta*
 - Possible further correction
 - Phase advance between BPMs
 - Scan of IP beta knobs

Results

- Tracked 2500 turns
- Plot log(turn survived)
- Significantly lowered DA
 - Very irregular beta*
 - Possible further correction
 - Phase advance between BPMs
 - Scan of IP beta knobs
- Emittance tracked over 10,000 turns
 - Compare to design:
 - EX = 0.71E-9, EY = 1.42E-12
 - Possible study of dispersion free steering

Glimpses of other activities

- Dynamic aperture scans with knobs and optics options
 - TPIV student Anne-Clemence Piveteau quantifying DA
 - Total continuous area but also largest possible ellipse
 - Scanning beta waist knob and observing DA
 - Apply method to other scans
- Optimisation of sextupoles for chromaticity and DA
 - Cristobal Garcia for his alternative lattices
 - Apply methods to improve DA of other cases (e.g. corrected lattices)

Beam-Beam	Lattice Errors	Solenoid	Scan:	Observe:
WS	Effective	None	 Error size (emit) Phase between IR Beta* 	 Emittance Dynamic Aperture (Lifetime?)
WS	None (V wiggler)	Helmut's kicks	Lattice emittance (wiggler)Beta*	EmittanceDynamic Aperture
None	None (V wiggler)	Xsuite Sol (+kickers)	Lattice emittance (wiggler)Beta*	EmittanceDynamic Aperture
WS	None (V wiggler)	Xsuite Sol (+kickers)	Lattice emittance (wiggler)Beta*	EmittanceDynamic Aperture
WS	Effective	Xsuite Sol (+kickers)	 Lattice emittance (wiggler) Phase between IR Beta* 	EmittanceDynamic Aperture
None	"Realistic" (Yi Wu)	None	 Beta* and waist 	DAEmittanceLuminosity
None	"Realistic" (Yi Wu)	None	- IR optics correction	DAEmittanceLuminosity
WS	"Realistic" (Yi Wu)	None	- Beta* and waist	DAEmittanceLuminosity