

Hands-on Session: Machine Learning A (Very) Short Primer on the Basics of Deep Learning

Tobias Kortus (tobias.kortus@rptu.de), Alexander Schilling (alexander.schilling@rptu.de)

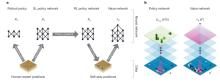
Scientific Comuting Group NHR @ SW - Method Lab AI and ML (https://nhrsw.de/mls/) University of Kaiserslautern-Landau (RPTU)

> HighRR Lecture Week 10 June 2024 - 14 June 2024

University of Kaiserslautern-Landau (RPTU)

Motivation

https://www.nature.com/articles/s41586-021-03819-2



https://openai.com/index/ video-generation-models-as-world-simulators/

Machine Learning and Deep Learning

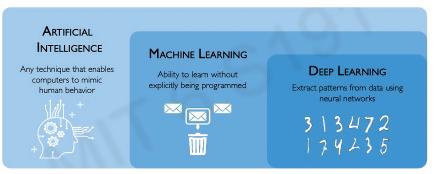


Figure from "MIT Introduction to Deep Learning" (http://introtodeeplearning.com)

From Linear Regression to Deep Learning

 \blacksquare We want to find parameters $\hat{\beta}$ for a linear model

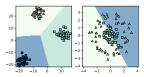
$$\hat{y} = \mathbf{X}'^T \hat{\beta},\tag{1}$$

 that minimize the residual sum of squares, defined as

$$RSS(\hat{\beta}) = \left(y - \mathbf{X}'^{T}\hat{\beta}\right)^{T} \left(y - \mathbf{X}'^{T}\hat{\beta}\right).$$
(2)

We can find the unique solution of the quadratic function by differentiating w.r.t. β̂:

$$\hat{\beta} = \left(\mathbf{X}^{\prime T} \mathbf{X}^{\prime}\right)^{-1} \mathbf{X}^{\prime T} y \tag{3}$$

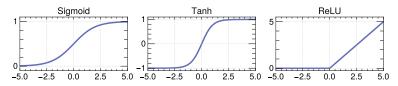


Linear regression/logistic regression fails if output is not linear/ linearly separable \rightarrow requires additional **feature** engineering.

- Deep learning aims to learn directly from raw data without feature engineering.
- Idea: stack multiple network layers after each other with nonlinear activation functions.
- Limitation: optimization becomes non-convex & no closed form solution.

Activation Functions

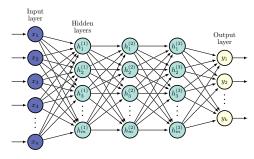
- Activation functions introduce non-linearities into the network.
- Basic requirements to learn complex non-linear relations (e.g. XOR Problem).
- The choice of the activation function is a hyperparameter. The most common choice however is ReLU or one of its variants.



■ **Softmax**: special activation for classification output → converts a vector of K real numbers into a probability distribution of K possible outcomes.

Feed-Forward Networks/ Multilayer Perceptron

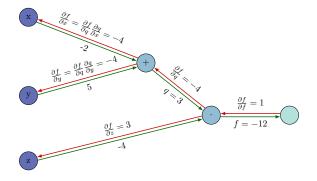
- Feed-Forward networks are composed in a multilayer structure with the following components:
 - 1 an input layer
 - 2 one or multiple hidden layer
 - 3 one output layer
- where each layer is connected with a non-linear activation function (e.g., ReLU). The activation function of the output layer (if required) is chosen based on the target value range.



Backpropagation

Deep neural networks are composed of a complicated set of functions, thus differentiating the whole expression is not trivial.

 \rightarrow Split all computations of neural network into atomic operations (e.g., addition, subtraction, multiplication) and use chain rule to decompose derivatives:

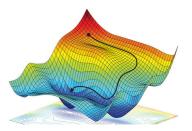


University of Kaiserslautern-Landau (RPTU)

Gradient Descent

Algorithm 1: Gradient Descent

Input: Step size: η Tolerance: ϵ Initialize w⁰ randomly:



Challenges with Vanilla Gradient Descent

- I Choosing a proper learning rate can be difficult: slow convergence/ divergence
- 2 Escaping flat regions such as plateaus or saddle points is notoriously hard
- Performs same gradient updates for all parameters
- 4 . . .
- \blacksquare Optimizer with, e.g., adaptive learning rate and/or momentum are often more robust to mentioned problems. \to ADAM Optimizer

Going Beyond Simple Feed-forward Networks

Data doesn't usually come in a tabular structure:

Feed-fortward networks often struggle to efficiently learn from complex data:

Example: Parameter Explosion for Dense Networks

MNIST Dataset

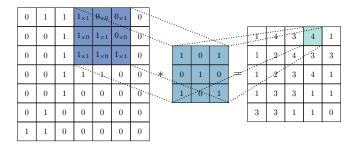
 $28 \times 28 \text{ pixel} \rightarrow W_1 \in \mathbb{R}^{784 \times N}$ $N = 128 \approx 100k \text{ parameters}$

Cards Dataset (grayscale)

224 × 224 pixel \rightarrow W₁ $\in \mathbb{R}^{50176 \times N}$ N = 128 $\approx 6M$ Parameters

Convolutional Neural Networks

- For a long time (and still) fundamental component of DL architectures used for image, signal processing and natural language processing.
- Kernel matrix as a learnable network parameter.

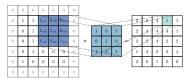


- Convolutional layer introduces inductive bias in terms of:
 - Sparse interaction/ parameter sharing
 - 2 Equivariance to translation

Padding, Pooling and Stride

- Pooling: Aggregate statistic over input neighborhood
 - output rep. is approximately invariant to small translations.
- Padding: Added zeros/copied values around grid topology
 - control the spatial size of the output volumes.
- Stride: Parameter controlling the amount of movement of kernel
 - Reduce size of output volume + improved comp. efficiency

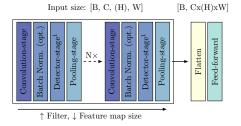
1	2	1	0
1	0	2	3
2	0	4	4
2	1	3	0



2	2	3
2	4	4
2	2	4

Convolutional Neural Networks

Given the introduced components, an entire convolutional network can be constructed using the following recipe:



The output of each convolution block is defined as:

$$n_{out} = \frac{n_{in} + 2p - k}{s} + 1 \tag{4}$$

- n_{in}: number of input features
- *n*_{out}: number of output features
- k: convolution kernel size
- p: convolution padding size
- s: convolution stride size

¹Detector-stage = non-linear activation

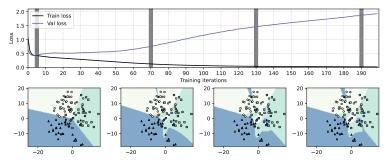
Model Evaluation

Never evaluate performance with an example used for training

- Estimate the performance on *previously unseen* examples
- Get a sense of how well the model generalizes
- Reserve a portion of the available data for testing
 - How much data we reserve depends on the problem
 - Often a reasonable split: 70% for training, 30% for evaluation
 - Training set: used for model learning
 - Test set: used for evaluation
- Problems
 - Potential waste of data: we want to use as much data for training as possible
 - High variance: performance is highly dependent on the data split
 - \blacksquare In cases where only little data is available \rightarrow k-fold cross-validation

Model Capacity, Underfitting and Overfitting

- \blacksquare Underfitting: Model can not capture the complexity of the data \rightarrow bigger network or more training iterations
- \blacksquare **Overfitting**: Model can not generalize and fits closely to training data \rightarrow smaller network or regularization techniques



 Measuring the model performance during training to detect under and overfitting requires additional validation dataset.

Regularization Techniques

An incomplete list of regularization techniques for deep learning:

- Parameter norm penalties (L1 & L2 regularization)
 - Limit the model capacity by penalizing high parameter values with L1 |w| or L2 norm ||w|| (Also known as ridge-/ lasso regression in linear models).
- Dropout ¹
 - Randomly "disable" network connections to avoid co-adaption of learned features (creates a new network architecture from the parent network).

Batch normalization

- Intermediate layers may take values with widely varying magnitudes → normalize the inputs.
- Data augmentation
 - Generate new training instances from a relatively small dataset by modifying existing samples (e.g. rotation, noise, blur, crop & resize, ...)
- Early stopping
 - Stop training when validatation loss increases.

¹Can be used during inference to obtain an approximate Bayesian network. (https://arxiv.org/abs/1506.02142)

Additional Literature²

- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. (2016). Deep Learning. MIT Press. (https://www.deeplearningbook.org/)
- Zhang, Aston Lipton, Zachary Li, Mu Smola, Alexander. (2021). Dive into Deep Learning. (https://d2l.ai/index.html)
- Hastie, T., Tibshirani, R.,, Friedman, J. (2001). The Elements of Statistical Learning. New York, NY, USA: Springer New York Inc.
- Kevin P. Murphy. (2022). Probabilistic Machine Learning: An Introduction. MIT Press. (https://probml.github.io/pml-book/book1.html)
- Kevin P. Murphy. (2023). Probabilistic Machine Learning: Advanced Topics. MIT Press. (https://probml.github.io/pml-book/book2.html)
- Christopher M. Bishop. (2006). Pattern Recognition and Machine Learning. Springer-Verlag, Berlin, Heidelberg.

²All additional references are listed without any particular ordering in mind.