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Motivation

https://www.nature.com/articles/s41586-021-03819-2

https://openai.com/index/

video-generation-models-as-world-simulators/

https://www.nature.com/articles/nature16961
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Machine Learning and Deep Learning

Figure from ”MIT Introduction to Deep Learning”(http://introtodeeplearning.com)
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From Linear Regression to Deep Learning

We want to find parameters β̂ for a linear model

ŷ = X′T β̂, (1)

that minimize the residual sum of squares,
defined as

RSS(β̂) =
(
y − X′T β̂

)T (
y − X′T β̂

)
. (2)

We can find the unique solution of the quadratic
function by differentiating w.r.t. β̂:

β̂ =
(
X′TX′

)−1
X′T y (3)
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Linear regression/logistic regression fails
if output is not linear/ linearly separable
→ requires additional feature
engineering.

Deep learning aims to learn directly from raw data without feature engineering.

Idea: stack multiple network layers after each other with nonlinear activation functions.

Limitation: optimization becomes non-convex & no closed form solution.
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Activation Functions
Activation functions introduce non-linearities into the network.

Basic requirements to learn complex non-linear relations (e.g. XOR Problem).

The choice of the activation function is a hyperparameter. The most common choice
however is ReLU or one of its variants.
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Softmax: special activation for classification output → converts a vector of K real
numbers into a probability distribution of K possible outcomes.

Softmax
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Feed-Forward Networks/ Multilayer Perceptron

Feed-Forward networks are composed in a multilayer structure with the following
components:

1 an input layer
2 one or multiple hidden layer
3 one output layer

where each layer is connected with a non-linear activation function (e.g., ReLU). The
activation function of the output layer (if required) is chosen based on the target value
range.
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Backpropagation

Deep neural networks are composed of a complicated set of functions, thus differentiating
the whole expression is not trivial.

→ Split all computations of neural network into atomic operations (e.g., addition,
subtraction, multiplication) and use chain rule to decompose derivatives:
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Gradient Descent

Algorithm 1: Gradient Descent
Input: Step size: η
Tolerance: ϵ

Initialize w0 randomly;
while ∥v∥ ≥ ϵ do

for i = 1 . . . N do
Forward pass → L(ŷi = fw(xi ), yi )
Backward pass → ∇wL(ŷi , yi )

end

Gradient v =
∑N

i ∇wL(ŷi , yi )

Update wt+1 = wt − ηv
end

Challenges with Vanilla Gradient Descent
1 Choosing a proper learning rate can be difficult: slow convergence/ divergence
2 Escaping flat regions such as plateaus or saddle points is notoriously hard
3 Performs same gradient updates for all parameters
4 . . .

Optimizer with, e.g., adaptive learning rate and/or momentum are often more robust to
mentioned problems. → ADAM Optimizer
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Going Beyond Simple Feed-forward Networks

Data doesn’t usually come in a tabular structure:

Feed-fortward networks often struggle to efficiently learn from complex data:

Example: Parameter Explosion for Dense Networks

MNIST Dataset

28× 28 pixel →W1 ∈ R784×N

N = 128 ≈ 100k parameters

Cards Dataset (grayscale)

224× 224 pixel →W1 ∈ R50176×N

N = 128 ≈ 6M Parameters
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Convolutional Neural Networks

For a long time (and still) fundamental component of DL architectures used for image,
signal processing and natural language processing.

Kernel matrix as a learnable network parameter.
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Convolutional layer introduces inductive bias in terms of:
1 Sparse interaction/ parameter sharing
2 Equivariance to translation
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Padding, Pooling and Stride

Pooling: Aggregate statistic over input
neighborhood

output rep. is approximately invariant to
small translations.

Padding: Added zeros/copied values
around grid topology

control the spatial size of the output
volumes.

Stride: Parameter controlling the amount
of movement of kernel

Reduce size of output volume + improved
comp. efficiency
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Convolutional Neural Networks

Given the introduced components, an entire convolutional network can be constructed
using the following recipe:
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↑ Filter, ↓ Feature map size

Input size: [B, C, (H), W] [B, Cx(H)xW]

N×

The output of each convolution block is defined as:

nout =
nin + 2p − k

s
+ 1 (4)

nin: number of input features
nout : number of output features
k: convolution kernel size
p: convolution padding size
s: convolution stride size

1Detector-stage = non-linear activation
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Model Evaluation

Never evaluate performance with an example used for training
Estimate the performance on previously unseen examples
Get a sense of how well the model generalizes

Reserve a portion of the available data for testing
How much data we reserve depends on the problem
Often a reasonable split: 70% for training, 30% for evaluation
Training set: used for model learning
Test set: used for evaluation

Problems
Potential waste of data: we want to use as much data for training as possible
High variance: performance is highly dependent on the data split
In cases where only little data is available → k-fold cross-validation

T. Kortus, A. Schilling Hands-on Session: Machine Learning 13/ 16



University of Kaiserslautern-Landau (RPTU)

Model Capacity, Underfitting and Overfitting

Underfitting: Model can not capture the complexity of the data → bigger network or
more training iterations

Overfitting: Model can not generalize and fits closely to training data → smaller
network or regularization techniques
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Measuring the model performance during training to detect under and overfitting
requires additional validation dataset.

T. Kortus, A. Schilling Hands-on Session: Machine Learning 14/ 16



University of Kaiserslautern-Landau (RPTU)

Regularization Techniques

An incomplete list of regularization techniques for deep learning:
Parameter norm penalties (L1 & L2 regularization)

Limit the model capacity by penalizing high parameter values with L1 |w| or L2 norm ∥w∥ (Also known
as ridge-/ lasso regression in linear models).

Dropout 1

Randomly ”disable”network connections to avoid co-adaption of learned features (creates a new network
architecture from the parent network).

Batch normalization
Intermediate layers may take values with widely varying magnitudes → normalize the inputs.

Data augmentation
Generate new training instances from a relatively small dataset by modifying existing samples (e.g.
rotation, noise, blur, crop & resize, . . . )

Early stopping
Stop training when validatation loss increases.

1Can be used during inference to obtain an approximate Bayesian network. (https://arxiv.org/abs/1506.02142)
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Additional Literature2

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. (2016). Deep Learning. MIT
Press. (https://www.deeplearningbook.org/)

Zhang, Aston Lipton, Zachary Li, Mu Smola, Alexander. (2021). Dive into Deep
Learning. (https://d2l.ai/index.html)

Hastie, T., Tibshirani, R.,, Friedman, J. (2001). The Elements of Statistical Learning.
New York, NY, USA: Springer New York Inc.

Kevin P. Murphy. (2022). Probabilistic Machine Learning: An Introduction. MIT Press.
(https://probml.github.io/pml-book/book1.html)

Kevin P. Murphy. (2023). Probabilistic Machine Learning: Advanced Topics. MIT Press.
(https://probml.github.io/pml-book/book2.html)

Christopher M. Bishop. (2006). Pattern Recognition and Machine Learning.
Springer-Verlag, Berlin, Heidelberg.

2All additional references are listed without any particular ordering in mind.
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