
Assignment for VHDL hands on workshop

Assignment 1: Counter module

Design

A Geiger counter typically gives out an analog

negative pulse when a radioactive particle is

detected.

In this assignment we assume that this signal has

been turned into a digital signal with positive

polarity – i.e. it is high (or digital ‘1’) when a hit is

seen, and low (digital ‘0’) otherwise.

The top level of your counter module is given below:

The other specifications are:

1. The counter should be 32 bits (or selectable size by using a generic)

2. The input signal pulse should be assumed to be asynchronous to the clock – i.e. you need to

make a synchronizer.

3. When enable is high the count module should:

a. Count the number of rising edges on the pulse input.

b. Be able to load a value into the counter to start from a different value than 0

4. When enable is low, the pulsecounter’s cnt_val should be set to zero.

Tip: Use std_logic, std_logic_vector as datatypes for all signals, except for the counter itself. Then use

unsigned and cast it to a std_logic_vector on the output.

Testbench

The module should have a testbench that simulates the basic functionality of the module. The best is

that this testbench is self checking, i.e. you do not need to look at the waveforms to verify that the

tests are successful.

There are several ways to do this, but the simplest way is to use the assert and report statements. I.e.

you can assert a true statement, if this fails it will report in the log a self defined message with a given

severity level.

If there is functionality that will be used several times it is wise to make a procedure and call it, as in

normal SW programming.

Assignment 2: Adding a Simple Bus Interface

Design

In this assignment you will add a simple bus interface (SBI) to your module from assignment 1. In this

way, your module can be connected to a CPU that can act as a master for your module.

The SBI protocol is a simple memory-mapped bus protocol. The term memory-mapped implies that

you talk to all the submodules on the bus by giving them individual addresses on which the respond

to.

The waveforms for the simple bus interface are given below:

The first transaction is a write to address 0x1, which can be recognized by both the cs and the wr line

being high. The second transaction is a read from address 0x1, where the data from register with

address 0x1 is read by the master. You can see that the dout gets the value that was previously written

by din.

This sbi slave address decoder has the following specifications:

• You must decide on a register map, i.e. which addresses you should use to be able to control

all the signals between the two modules.

o The address can be 4 bits wide

o The data (din and dout) can be 32 bits wide

o You must decide the access of these addresses, i.e. should the by read and write (RW),

read only (RO) or write only (WO).

• You should make two processes, one for writing to the slave, and one for reading from the

slave. The write process should be synchronous, while the read process can be combinatorial.

Hint: use case statements for selecting the address.

When the SBI slave is done you should make a top level module (geiger.vhd) that wraps the two

modules like shown in the figure above.

Testbench

You should make a complete testbench for this as well. The testbench should have:

• A process called a test sequencer that defines all the tests you should do and then executes

them. Some standard tests are:

o Check defaults on output ports (after reset)

o Check defaults on readable registers.

o Check write and then read on RW registers.

o Test to write a preset value to the counter, and check if the counter has been set.

o …

• It is advisable to make procedures for sbi_write and sbi_read. These are made in the sequencer

process, just before the begin word, and should define the sequence of setting the SBI bus for

a write and a read respectively.

o These procedures should be self checking – i.e. – the should test if the value read back

from the bus is as expected. Using assert and report statements the output log could

look like shown on the next page.

You will be able to see examples.

WRITE READ

More information
There is a course at UiO that is fully open on the web that our students sometimes do. If you want to

learn more about VHDL programming or want to get some videos and slides you can look at and learn

for yourself (or while sitting here), it is a very nice alternative.

https://fys4220.github.io/

https://fys4220.github.io/

