b->sll binning in LHCb

Andrea Mauri on behalf of the LHCb Rare Decays group

LHC Heavy Flavour WG topical meeting: b->sll

14 May 2024

binning philosophy

- As many as possible within the limit of keep
- Prime example: $B^{0,+} \rightarrow K^{*0,+}\mu^+\mu^-$

2 large bins	8 small bins	_	
[1.1, 6.0]	[0.1, 0.98]	4(1020) and	
	[1.1, 2.5]	$\phi(1020)$ gap	
	[2.5, 4.0]		
	[4.0, 6.0]		finer binn
	[6.0, 8.0]		a sub-sch
	[11.0, 12.5]		coarser b
[15.0, 19.0]	[15.0, 17.0]	_	
	[17.0, 19.0]		

• $m_{\mu\mu}$ resolution is excellent

no limits to the narrowness of the bins

Clearly depends on stats

More bins

q^2 range (GeV^2/c^4)	$11.0 < q^2 < 11.8$
$0.1 < q^2 < 0.98$	$11.8 < q^2 < 12.5$
$1.1 < q^2 < 2.0$	$15.0 < q^2 < 16.0$
$2.0 < a^2 < 3.0$	$16.0 < q^2 < 17.0$
$3.0 < a^2 < 4.0$	$17.0 < q^2 < 18.0$
5.0 < q < 1.0 $4.0 < a^2 < 5.0$	$18.0 < q^2 < 19.0$
4.0 < q < 5.0 $5.0 < q^2 < 6.0$ $6.0 < q^2 < 7.0$	$19.0 < q^2 < 20.0$
	$20.0 < q^2 < 21.0$
$0.0 < q^2 < 7.0$	$21.0 < q^2 < 22.0$
$1.0 < q^2 < 8.0$	$1.1 < q^2 < 6.0$
	$15.0 < \bar{q}^2 < 22.0$

0

Less bins

2 large bins	5 small bins	
[1.1, 6.0]	[0.1, 0.98]	$\begin{array}{c} \bullet & 0.9 \\ \bullet & 0.8 \end{array} \\ \hline \bullet & \bullet \end{array}$
	[1.1, 4.0]	
	[4.0, 6.0]	
	[6.0, 8.0]	0.4
	[11.0, 12.5]	
		- 0.1 Εφ

[15.0, 18.9]

For electrons, the finer the binning gets, the stronger the correlations between the bins

Binned vs unbinned

- LHCb is performing complementary q2-unbinned measurements
- Journey started in 2017 with (binned) phase difference determination in $B^+ \rightarrow K^+ \mu \mu$

Now 4D unbinned fit to $B^0 \to K^{*0} \mu_{\mu}^{*0}$ Fit projections in q^2 sub-regions Now 4D unbinned fit to $B^0 \to K^{*0} \mu_{\mu}^{*0}$ the four-dimensional maximum [kelihood fit to the signal region is performed simultane-

- Complementary model assumptions $\hat{\theta}_{\ell}, \phi, \text{ and } q^2$ distributions within each of the three regions are shown in Fig.
 - Z-expansion [PRL 132 (2024) 131801, PR (2024) 952009
 - dispersion relation [LHCb-PAPER-2024-011 in proparation] LHCb 8.4fb-

Pro: more information

Cons: model-dependence (require external inputs from theory, e.g.

7 100

Unbinned analyses: pros

- Better sensitivity
 - Exact improvement depends on fit configuration, stats, etc.
 - Simple case with P-wave only toys, fit to C9, z-expansion model

- Fit extracts a lot of information: 100 signal parameters!!
 - What's the best way to pass this information to the community?

Reinterpretation of the result?

- z-expansion analysis provided bootstrapped set of coefficients
- Dispersion relation will provide synthetic datasets
 - Iarge stat toys generated from fit result covariance matrix
 - can be refitted with different inputs/constraints

- A 3rd unbinned $B^0 \rightarrow K^{*0}\mu\mu$ analysis is on the way
 - minimal possible model dependency
 - ► amplitudes parametrised with 4th order polynomials in $q^2 \in [1.1, 8.0]$ GeV²
 - no inputs required for FF, ect.

Summary and discussion points

- Muons: as many bins a possible
- Electrons: less stat and worse resolution, possibility to splitting bins in the short future Unbinned analyses: complementary information, different level of model dependency baked
- into the analysis
 - Can be extended to other decays, e.g. $B^+ \to K^+ \mu \mu$, CPV (split by $B^{0,+}$ vs $\overline{B}^{0,+}$), $B^+ \to \pi^+ \mu \mu$

