

CMS contribution to $b \rightarrow sll$ binning discussion

Sara Fiorendi (University of Tennessee) for the CMS Collaboration LHC Heavy Flavour WG topical meeting: b→sll May 14th, 2024

Π

outline

- Introduction
- Angular analysis ingredients
- Considerations about binning choices in CMS & among the experiments
- Prospects for Run3

Introduction

- In CMS, $b \rightarrow sll$ decays are extensively studied to measure possible NP contributions, via:
 - differential BRs
 - angular observables
 - Lepton Flavor Universality tests
- Studies are performed in integrated ranges of di-lepton mass square, q², as different q² regions probe different processes

- In this talk we will focus on analyses with two muons in the final state
 - experimentally "easy" to trigger thanks to the two muons in the final state

Analysis strategy overview

using the B⁰ \rightarrow K^{*}µµ case as example of a typical angular analysis

- Analysis is **binned** in q² intervals
- In each q^2 bin, we perform an unbinned maximum likelihood fit to (m, θ_k , θ_l , ϕ) with

$$pdf(m, \cos \theta_{K}, \cos \theta_{l}, \phi) = Y_{S} \begin{bmatrix} S^{C}(m) S^{a}(\cos \theta_{K}, \cos \theta_{l}, \phi) e^{C}(\cos \theta_{K}, \cos \theta_{l}, \phi) \\ + R \cdot S^{M}(m) S^{a}(-\cos \theta_{K}, -\cos \theta_{l}, -\phi) e^{M}(\cos \theta_{K}, \cos \theta_{l}, \phi) \end{bmatrix}$$

$$+ Y_{B} B^{m}(m) B^{a}(\cos \theta_{K}, \cos \theta_{l}, \phi)$$
background component angular bkg shape

 Y_{S} and Y_{B} are the signal and background yields, respectively

the angular shape of the bkg component is estimated using the angular distributions of the data sidebands

Binning choice: motivations

- Due to the small BR, even after Run2 the **analyses are still statistically limited**
- Binning choice driven by the available statistics
 - obviously the signal yield must be above a certain amount in order to "meaningful" have statistic uncertainties
 - given that our samples are not background free, we should also retain a sufficient number of events in the sidebands to be able to model the angular distribution of the bkg in the signal region
- also, the dimuon resonances should be removed from the signal sample → expected contamination influences the boundary choice
- finally, historical reasons have played a role in the current adopted binning schemes
 - ease of comparing to previous results

Binning schemes

• Choices currently adopted by the various (angular) analyses in CMS

Resonant contamination

- Almost all analyses implement a "diagonal" selection in order to reject
- a fraction of events from the control channels still leaks into the adjoining q² bins
 - mainly due to the presence of an unreconstructed photon from the charmonium decay
- This contamination is removed from the signal region by applying combined requirements on q and the B^o candidate invariant mass
 - usually tuned independently for the dimuon mass regions below the J/ ψ , between the J/ ψ and the $\psi(2S)$, and above the $\psi(2S)$

Comparison to other experiments

• The comparison among the results from different Collaborations is currently very difficult as the bin definitions are overlapping

- Similarly, theory predictions shown on such plots are only coherent with one set of measurements
- It's crucial to agree on common bin boundaries among the experiments

Prospects for Run3

- We expect to collect around 250 fb⁻¹ at the end of Run3 \rightarrow factor ~1.8 x Run2 stat
- The trigger strategy has been further improved
 - the main HLT path used for the $b \rightarrow s\mu\mu$ analyses will have better reconstruction efficiency for low p_T muons, as well as no requirement on the presence of an additional track
 - large increase in the signal yield per fb⁻¹ compared to the Run2 dimuon+track triggers is foreseen for final states like $B^0 \rightarrow J/\psi K^{0}s$
 - smaller improvement for decay chains where all the final particles come from a common vertex
- The analyses will still be statistically dominated, even with the current binning

Conclusions and more specific questions

- We need to agree on a recommended binning scheme common among the experiments
- Does it make sense to go close to the resonances?
 - if theory predictions are not valid there, there's no reason for the experiments to go as close as possible
- About the region above the $\psi(2S)$, flavio authors report that their predictions are not valid below 15 GeV. Is this caveat valid also for other predictions?
 - again, this could impact the choice of the lower edge of the first bin above the $\psi(2S)$
- About the region above the $\psi(2S)$, we understand that large bins are preferred. Could you confirm/better define what large means in this case?

extra

Yellow Report studies on binning

- For the <u>YR</u> exercise, we studied a possible splitting of the current bins in narrower ones with the HL-LHC expected statistics
 - to better constrain, e.g., the P_5 ' shape at low q^2
- Criteria: statistical uncertainty of the order of the total systematic uncertainty in the same bin
 - with additional constraint width > $5\sigma_{\mu\mu}$
- 14 bins between 2 and 6 GeV²
- Main caveats: based on Run1 analysis
 - not full angular analysis
 - selection in Run2 has already improved wrt Run1 by a factor of 30%

Figure 3: Projected statistical (hatched regions) and total (open boxes) uncertainties on the P'_5 parameter versus q^2 in the Phase-2 scenario with an integrated luminosity of 3000 fb⁻¹. The CMS Run I measurement of P'_5 is shown by circles with inner vertical bars representing the statistical uncertainties and outer vertical bars representing the total uncertainties. The vertical shaded regions correspond to the J/ ψ and ψ' resonances. The two lower pads represent the statistical (upper pad) and total (lower pad) uncertainties with the finer q^2 binning. 12