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Non-local form factors

Hλ(q2) = iPλµ

∫
d4x eiqx〈K(∗)(k)|T {J µem, CiOi(0)} |B̄(k + q)〉

How do we parametrise these long-distance effects?

b

s

`+

`−

γ
c

c̄

O1,2

lepton flavour universal

C9 → Ceff
9 (q2) = C9 + CLD

9 (q2)
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How to estimate CLD
9

• A first-principle calculation of CLD
9 is hard and possible only with Lattice QCD

⇒ No short-term prospects, would require evaluating B → K(∗)J/ψ

• We can calculate points at negative q2 using LCSRs

⇒ Additional information is needed in the physical region, e.g. from B → K(∗)J/ψ
data

• We need to infer a kinematic dependence

⇒ Can we avoid being model-dependent?

• Experimental data are essential to succeed in this task
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Binned vs Unbinned

Binned Unbinned
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Binned vs Unbinned

Binned Unbinned

• No functional form for CLD
9 is

specified

⇒ Model-independent

• A specific parametrisation for CLD
9 is

assumed

⇒ A model-dependence is introduced
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9 is
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⇒ Model-independent
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• Results are given in terms of binned
measurements of angular coefficients,
branching ratios, etc.

⇒ What binning scheme is optimal?

• Results are given in terms of the
parametrisation parameters
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Binned vs Unbinned

Binned Unbinned

• No functional form for CLD
9 is

specified

⇒ Model-independent

• A specific parametrisation for CLD
9 is

assumed

⇒ A model-dependence is introduced

• Results are given in terms of binned
measurements of angular coefficients,
branching ratios, etc.

⇒ What binning scheme is optimal?

• Results are given in terms of the
parametrisation parameters

⇒ What we can learn?

• Binned analyses are immediately
reusable to reinterpret the results in
terms of long-distance contributions
or NP

• Is there a way to recast the unbinned
results?
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An example of unbinned: B+ → K+µ+µ−

• With binned analysis we can test different parametrisation for CLD
9

• We can study for example the q2 dependence of C9 to try to get hints on CLD
9

[1.1, 2] [2, 3] [3,4] [4, 5] [5, 6] [6, 7] [7, 8]

0

1

2

3

4

5

[15, 16] [16, 17] [17,18] [18, 19] [19, 20] [20, 21] [21, 22]
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• At low q2, LHCb and CMS have the same binning scheme

⇒ The combination helps in extracting more precise results

• At high q2, different binning schemes don’t allow to combine

⇒ The high q2 region is essential to confirm/reject the patterns that we see at low q2
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Unbinned analysis
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Figure 9: The nonlocal contributions from (maroon) this analysis that includes one- and two-
particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�

7 terms
are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [37]
from the 4.7 fb�1 LHCb analysis [32] are also shown (pink) with and (yellow) without theory
input from q2 < 0. See text for more detail.
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Figure 9: The nonlocal contributions from (maroon) this analysis that includes one- and two-
particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�

7 terms
are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [37]
from the 4.7 fb�1 LHCb analysis [32] are also shown (pink) with and (yellow) without theory
input from q2 < 0. See text for more detail.
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Figure 5: Real and imaginary part of the non-local contributions H�(q
2) normalised to the

size of the local form factors F�(q
2) obtained for the two fit configurations. The black dots

correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.

of the coe�cients squared over all b ! s`` processes must be below unity. However, the470

dispersive bound is found to be irrelevant for this analysis since it is very far from being471

fulfilled, as the sum of the coe�cients squared, after the appropriate basis transformation,472

is found to be of the order of O(10�3), for the fit result without the constraints at negative473

q2.474

Finally, a good compatibility between the input values and corresponding fit results475

is observed on all the B0 !  nK
⇤0 observables. Moreover, in addition to the di↵erences476

of phases provided by B0 !  nK
⇤0 external measurements, this analysis introduces477

another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n

0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
�0.18480

for the fit result with the q2 < 0 constraints and �1.61+0.22
�0.20 for the one without these481

constraints,3 showing a good agreement between the two fit configurations. This result is482

also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �
J/ 
0 7! �

J/ 
0 + ⇡, which is

however excluded at more than 3�.
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size of the local form factors F�(q
2) obtained for the two fit configurations. The black dots

correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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z-expansion dispersion relation

- Good agreement in the 
real part between the 
two fit configurations 

- Small discrepancy in 
the imaginary part                  

In general, good agreement 
between the two analyses!

preliminary

preliminary

• Different ansatz on CLD
9 are tested directly on data

• Theory predictions for the long distance can be tested directly against data

• More information in the binned case is available

⇒ Can we use this information?
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Discussion points

• Binned or unbinned?

⇒ Binned analysis are necessary and should be given priority

⇒ We would like to have as many bins as possible, depending on the experimental
limitations

• Unbinned analyses are model-dependent but also contain more information

⇒ Is there a way to reinterpret them?

• The high q2 region is important, and allows us to check the consistency over the
full kinematic range

• Would it make sense to have a strategy paper from the HFWG?
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Appendix



B → K(∗)`+`−

AL,Rλ = Nλ
{

(C9 ∓ C10)Fλ(q2) +
2mbMB

q2

[
C7FTλ (q2)− 16π2MB

mb
Hλ(q2)

]}
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B → K(∗)`+`−

AL,Rλ = Nλ
{

(C9 ∓ C10)Fλ(q2) +
2mbMB

q2

[
C7FTλ (q2)− 16π2MB

mb
Hλ(q2)

]}

local: O9,O10,O7
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B → K(∗)`+`−

AL,Rλ = Nλ
{

(C9 ∓ C10)Fλ(q2) +
2mbMB

q2

[
C7FTλ (q2)− 16π2MB

mb
Hλ(q2)

]}

local: O9,O10,O7

non-local: O1,O2
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Exclusive matrix elements

〈Hs|s̄Γµb|Hb〉 =
∑

i

SiµFi
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Exclusive matrix elements

〈Hs|s̄Γµb|Hb〉 =
∑

i

SiµFi

scale ΛQCD
independent

Lorentz structures

form factor
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Exclusive matrix elements

〈Hs|s̄Γµb|Hb〉 =
∑

i

SiµFi

Form factors determinations

• Lattice QCD

• QCD SR, LCSR (q2 −mb2 6 0)

Form factors parametrisations

• Analytic properties → BGL

scale ΛQCD
independent

Lorentz structures

form factor

only points at specific
kinematic points

data points needed
to fix the coefficients
of the expansion
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The z expansion

• q2 dependence must be inferred

• q2 is large compared to m2
B ⇒ not a good expansion variable

• Conformal variable z

z(q2, t0) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

• t+ = (mB +mK(∗))2 pair production threshold

• t0 < t+ free parameter that can be used to minimise |zmax|

• |z| � 1, and we can write

Fi =
1

Pi(z)φi(z)

ni∑
k=0

aikz
k

ni∑
k=0

|aik|2 < 1
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Local form factors

F (T )
λ = 〈K(∗)(k)|s̄Γ(T )

λ b|B̄(k + q)〉

−15 −10 −5 0 5 10 15

q2 [GeV2]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
B
→
K
∗

1
(q

2
)

EOS v1.0.7

This work N = 3

LQCD only

LCSR (GKvD 2018)

LQCD (HLMW 2015)

Systematically improvable with new LQCD calculations

See 2305.06301 for details
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How to distinguish New Physics from CLD
9

CNP
9 = constant

• Studying the kinematic dependence of C9 can give hints on the nature of
possible deviations

• It is essential to use precise experimental data in a large q2 window

b

s

ℓ−

NP

ℓ+

b

s

!+

!−
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Which analysis can we use?

1. Binned analysis

• Results are given in terms of bins of kinematic distributions

• No model has to be assumed, apart from that in the MC

• To extract as much information as possible, the more bins the better

2. Unbinned analysis

• A specific model for CLD
9 (q2) is assumed

• The results are given in terms of the parameters that are present in the
parametrisation

• The model dependency renders the results difficult to use
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q2 dependence in CLD
9 (q2)

• LHCb+CMS data for B → K(∗)µ+µ− observables are used to extract Ceff
9

[1403.8045, 2401.07090, 1606.04731, 2003.04831]

• A model for the charm effects is assumed based on dispersion relation

Ceff
9 = C9 +

∑
V

ηλV e
iδλV

q2

(m2
V )

mV ΓV
m2
V − q2 − imV ΓV

• The parameters ηλV have to be fixed from B → K(∗)V data

• The phases δλV are fixed from LHCb analysis [1612.06764]

V Polarization ⌘�V ��V

J/ 
? 26.6 ± 1.1 1.46 ± 0.06
k 12.3 ± 0.5 �4.42 ± 0.06
0 13.9 ± 0.5 �1.48 ± 0.05

 (2S)
? 3.0 ± 0.9 3.2 ± 0.4
k 1.11 ± 0.30 �3.32 ± 0.22
0 1.14 ± 0.06 2.10 ± 0.11

Table 2.2: Magnitudes (⌘�V ) and phases (��V ) of the B ! K⇤(✏�)V ! K⇤(✏�)µ+µ� amplitudes,
as determined in Appendix A.

where F�(q
2) denote the four hadronic form factors defined in Eq. (2.11).

The function ⇢�cc̄(s) is the spectral density for an intermediate hadronic state with cc̄ valence-
quark content and invariant mass s, and s0 denotes the energy threshold where such state
can be created on-shell. The parameter q2

0 is the subtraction point. As shown in [6], one
recovers Eq. (2.16) if ⇢�cc̄(s) is evaluated at the partonic level, i.e. factorizing the hadronic
matrix elements as

hH�|T
�
jem
µ (x), Q1,2(0)

 
|Bi / h0|T

�
jem
µ (x), (c̄L�

µcL)(0)
 

|0i ⇥ hH�|s̄L�µsL|Bi (2.23)

and evaluating the T -product between the charm current and jem
µ (x) at O(↵0

s).
In order to take into account non-perturbative e↵ects, we need to evaluate ⇢cc̄(s) at the

hadronic level. In this case, the leading contribution is provided by single-particle intermediate
states with the correct quantum numbers and valence quarks, namely the spin-1 charmonium
resonances (V = J/ ,  (2S), . . .). Describing these contributions to ⇢cc̄(s) via a sum of Breit-
Wigner distributions leads to

�H�,1P
cc̄ (q2) =

X

V

⌘�V ei��V
(q2 � q2

0)

(m2
V � q2

0)
Ares

V (q2)

�����
q2
0=0

=
X

V

⌘�V ei��V
q2

m2
V

Ares
V (q2) , (2.24)

where

Ares
V (q2) =

mV �V

m2
V � q2 � imV �V

. (2.25)

The {⌘�V , ��V } parameters need to be determined from data. In Table 2.1 and Table 2.2 we report
their values for the two leading charmonium resonances, J/ and  (2S). In the B ! K case
we also report the {⌘�V , ��V } for the wider charmonium states (which have a smaller impact).
The determination of these parameters is discussed in Appendix A.

In order to use the general decomposition in Eq. (2.22), the last missing ingredient is the
subtraction term Y �

cc̄(q
2
0). Having chosen as subtraction point q2

0 = 0, which is far from the
resonance region, we can use the perturbative result in Eq. (2.16). Since

h(q2, m)
q2!0�! �4

9


1 + ln

✓
m2

µ2

◆�
(2.26)

we finally obtain

Y �
cc̄(q

2) = �4

9


4

3
C1(µ) + C2(µ)

� 
1 + ln

✓
m2

µ2

◆�
+

16⇡2

F�(q2)

X

V

⌘�V ei��V
q2

m2
V

Ares
V (q2) . (2.27)

7

V ⌘K
V �K

V mV (MeV) �V (MeV)

J/ 32.3 ± 0.6 �1.50 ± 0.05 3096.9 0.0926 ± 0.0017

 (2S) 7.12 ± 0.32 2.08 ± 0.11 3686.1 0.294 ± 0.008

 (3770) (1.3 ± 0.1) ⇥ 10�2 �2.89 ± 0.19 3773.7 ± 0.4 27.2 ± 1.0

 (4040) (4.8 ± 0.8) ⇥ 10�3 �2.69 ± 0.52 4039 ± 1 80 ± 10

 (4160) (1.5 ± 0.1) ⇥ 10�2 �2.13 ± 0.33 4191 ± 5 70 ± 10

 (4415) (1.1 ± 0.2) ⇥ 10�2 �2.43 ± 0.43 4421 ± 4 62 ± 20

Table 2.1: Magnitudes (⌘K
V ) and phases (�K

V ) of the B+ ! K+V ! K+µ+µ� amplitudes, as
determined in Appendix A. The mass and width of the resonances are also reported.

2.2 Long-distance contribution from cc resonances

The perturbative result in Eq. (2.16) does not provide a good approximation of the large non-
perturbative contribution induced by the narrow charmonium resonances. However, the latter
can be well described using dispersion relations and experimental data [5,6,22–24]. To achieve
this goal, we need to go back to Eq. (2.12) and isolate the hadronic part of the matrix elements.
In the B ! K case, this can can be decomposed as [6]

�i

Z
d4xeiqxhK|T

(
jem
µ (x),

X

i=1,2

CiQi(0)

)
|Bi = [q2(pB)µ � (pB · q)qµ]HK

cc̄(q
2) . (2.18)

Proceeding in a similar manner, ignoring tensor contributions (i.e. terms with a Q7-like struc-
ture), we decompose the four-quark matrix elements in B ! K⇤ as

� 2i

Z
d4xeiqxhK⇤|T

(
jem
µ (x),

X

i=1,2

CiQi(0)

)
|Bi =

=

✓
✏⇤µ � qµ

✏⇤ · q

q2

◆
(mB + mK⇤) Hk

cc̄(q
2) � i✏µ⌫⇢�(✏

⇤)⌫p⇢Bp�K⇤
2

mB + mK⇤
H?

cc̄(q
2)

�
✓

(pB + pK⇤)µ � qµ
q · (pB + pK⇤)

q2

◆
✏⇤ · q

mB + mK⇤
eH0

cc̄(q
2) . (2.19)

Since we are interested in labeling the amplitudes according to the helicity of the hadronic
state, in analogy with Eq. (2.11), we also define

H0
cc̄(q

2) =
(mB + mK⇤)2(m2

B � m2
K⇤ � q2)Hk

cc̄(q
2) � �(m2

B, m2
K⇤ , q2) eH0

cc̄(q
2)

16mBm2
K⇤(mB + mK⇤)

. (2.20)

We can write a one-time subtracted dispersion relation for each H�
cc̄(q

2) function, namely

�H�
qq̄(q

2) =
q2 � q2

0

⇡

Z 1

s0

ds
Im[H�

cc̄(s)]

(s � q2
0)(s � q2)

⌘ q2 � q2
0

⇡

Z 1

s0

ds
⇢�cc̄(s)

(s � q2
0)(s � q2)

. (2.21)

This allows us to rewrite in full generality (i.e. without any expansion in ↵s) the cc̄ contribution
to Y �(q2) as

Y �
cc̄(q

2) = Y �
cc̄(q

2
0) +

16⇡2

F�(q2)
�H�

cc̄(q
2) , (2.22)

6

B+ → K+µ+µ− B → K∗µ+µ−
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Low- and high-q2

B+ → K+µ+µ−

[1.1, 2] [2, 3] [3,4] [4, 5] [5, 6] [6, 7] [7, 8]

0
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4

5

[15, 16] [16, 17] [17,18] [18, 19] [19, 20] [20, 21] [21, 22]

0
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5

B0 → K∗µ+µ−

[1.1, 2.5] [2.5, 4] [4, 6] [6,8]

0

1

2

3

4

5

6

[11, 12.5] [15, 17] [17, 19]
0

1

2

3

4

5

6

⇒ No evidence of q2 dependence throughout the bins and the various polarisations

MB, Isidori, Maechler, Tinari, 2401.18007
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Consistency throughout the whole spectrum

0

1

2

3

4

5

• Good consistency in the
whole q2 spectrum

• No significant q2 dependence

• The discrepancy in C9 is
compatible with a
short-distance origin

• The method is improvable
with finer bins and closer to
the resonances

MB, Isidori, Maechler, Tinari, 2401.18007
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Long-distance effects from analyticity
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FIG. 1. Example of charming-penguin diagrams contributing to the B ! K(⇤)`+`� amplitude. Diagram (a) represents the
class of charming-penguin amplitudes related to c � c̄ state that subsequently goes into a virtual photon, see refs. [43, 45–48].
Diagram (b) and (c) represent the kind of contributions from rescattering of intermediate hadronic states, at the quark and

meson level respectively. The phenomenological relevance of rescattering for the SM prediction of the B ! K(⇤)`+`� decays
has been recently considered in ref. [38].

mental novelties discussed above. Adopting the model-
independent language of the Standard Model E↵ective
Theory (SMEFT) [82, 83], we present an updated anal-
ysis of |�B| = |�S| = 1 (semi)leptonic processes and
show that current data no longer provide strong hints for
NP. Indeed, updating the list of observables considered
in our previous global analysis [38] with the results in
eqs. (1) and (2), the only remaining measurements devi-
ating from SM expectations and not a↵ected by hadronic
uncertainties are the LUV ratios RKS

and RK⇤+ [7], for
which a re-analysis by the LHCb collaboration is manda-
tory in view of what discussed in [54, 55].

The anatomy of the B ! K(⇤)`+`� decay can be char-
acterized in terms of helicity amplitudes [24, 84], that in
the SM at a scale close to the bottom quark mass mb can
be written as:

H�
V /

⇢
CSM

9
eVL� +

m2
B

q2


2mb

mB
CSM

7
eTL� � 16⇡2h�

��
,

H�
A / CSM

10
eVL� , HP / m` mb

q2
CSM

10

✓
eSL � ms

mb

eSR

◆
,

with � = 0, ± and CSM
7,9,10 the SM Wilson coe�cients of

the semileptonic operators of the |�B| = |�S| = 1 weak
e↵ective Hamiltonian [85–87], normalized as in ref. [41].
The naively factorizable contributions to the above am-
plitudes can be expressed in terms of seven q2-dependent

form factors, eV0,±, eT0,± and eS [88, 89]. At the loop level,
non-local e↵ects parametrically not suppressed (neither
by small Wilson coe�cients nor by small CKM factors)
arise from the insertion of the following four-quark oper-
ator:

Qc
2 = (s̄L�µcL)(c̄L�

µbL) , (3)

that yields non-factorizable power corrections in H�
V via

the hadronic correlator h�(q2) [26, 30, 90], receiving the
main contribution from the time-ordered product:

✏⇤µ(�)

m2
B

Z
d4x eiqxhK̄⇤|T {jµ

em(x)Qc
2(0)}|B̄i , (4)

with jµ
em(x) the electromagnetic (quark) current.

This correlator receives two kinds of contributions.
The first corresponds to diagrams of the form of dia-
gram (a) in Fig. 1, where the initial B meson decays
to the K(⇤) plus a cc̄ state that subsequently goes into
a virtual photon. This contribution has been studied in
detail in the context of light-cone sum rules in the regime
q2 ⌧ 4m2

c in [43]; in the same reference, dispersion rela-
tions were used to extend the result to larger values of the
dilepton invariant mass. While the operator product ex-
pansion performed in ref. [43] was criticized in ref. [29],
and multiple soft-gluon emission may represent an ob-
stacle for the correct evaluation of this class of hadronic
contributions [30, 40, 91, 92], refs. [45, 46] have exploited
analyticity in a more refined way than [43]. In those
works the negative q2 region – where perturbative QCD
is supposed to be valid – has been used to further con-
strain the amplitude. Building on these works, together
with unitarity bounds [47], ref. [48] found a very small
e↵ect in the large-recoil region.

The second kind of contribution to the correlator in
eq. (4) originates from the triangle diagrams depicted in
Fig. 1 (b), in which the photon can be attached both
to the quark and antiquark lines and we have not drawn
explicitly the gluons exchanged between quark-antiquark
pairs. An example of an explicit hadronic contribution
of this kind is depicted in Fig. 1 (c).1 The DsD

⇤ pair
is produced by the weak decay of the initial B meson
with low momentum, so that no color transparency ar-
gument holds and rescattering can easily take place. Fur-
thermore, the recent observation of tetraquark states in
e+e� ! K(DsD

⇤ + D⇤
sD) by the BESIII collaboration

[94] confirms the presence of nontrivial nonperturbative
dynamics of the intermediate state.

One could think of applying dispersive methods also

1 See ref. [93] for a very recent estimate of similar diagrams with
up quarks, rather than charm quarks, in the internal loop.

When q2 is large enough to create
on-shell states, the amplitude has
poles

1707.07305, 2011.09813, 2206.03797
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FIG. 1. Example of charming-penguin diagrams contributing to the B ! K(⇤)`+`� amplitude. Diagram (a) represents the
class of charming-penguin amplitudes related to c � c̄ state that subsequently goes into a virtual photon, see refs. [43, 45–48].
Diagram (b) and (c) represent the kind of contributions from rescattering of intermediate hadronic states, at the quark and

meson level respectively. The phenomenological relevance of rescattering for the SM prediction of the B ! K(⇤)`+`� decays
has been recently considered in ref. [38].

mental novelties discussed above. Adopting the model-
independent language of the Standard Model E↵ective
Theory (SMEFT) [82, 83], we present an updated anal-
ysis of |�B| = |�S| = 1 (semi)leptonic processes and
show that current data no longer provide strong hints for
NP. Indeed, updating the list of observables considered
in our previous global analysis [38] with the results in
eqs. (1) and (2), the only remaining measurements devi-
ating from SM expectations and not a↵ected by hadronic
uncertainties are the LUV ratios RKS

and RK⇤+ [7], for
which a re-analysis by the LHCb collaboration is manda-
tory in view of what discussed in [54, 55].

The anatomy of the B ! K(⇤)`+`� decay can be char-
acterized in terms of helicity amplitudes [24, 84], that in
the SM at a scale close to the bottom quark mass mb can
be written as:
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7,9,10 the SM Wilson coe�cients of

the semileptonic operators of the |�B| = |�S| = 1 weak
e↵ective Hamiltonian [85–87], normalized as in ref. [41].
The naively factorizable contributions to the above am-
plitudes can be expressed in terms of seven q2-dependent

form factors, eV0,±, eT0,± and eS [88, 89]. At the loop level,
non-local e↵ects parametrically not suppressed (neither
by small Wilson coe�cients nor by small CKM factors)
arise from the insertion of the following four-quark oper-
ator:

Qc
2 = (s̄L�µcL)(c̄L�

µbL) , (3)

that yields non-factorizable power corrections in H�
V via

the hadronic correlator h�(q2) [26, 30, 90], receiving the
main contribution from the time-ordered product:

✏⇤µ(�)

m2
B

Z
d4x eiqxhK̄⇤|T {jµ

em(x)Qc
2(0)}|B̄i , (4)

with jµ
em(x) the electromagnetic (quark) current.

This correlator receives two kinds of contributions.
The first corresponds to diagrams of the form of dia-
gram (a) in Fig. 1, where the initial B meson decays
to the K(⇤) plus a cc̄ state that subsequently goes into
a virtual photon. This contribution has been studied in
detail in the context of light-cone sum rules in the regime
q2 ⌧ 4m2

c in [43]; in the same reference, dispersion rela-
tions were used to extend the result to larger values of the
dilepton invariant mass. While the operator product ex-
pansion performed in ref. [43] was criticized in ref. [29],
and multiple soft-gluon emission may represent an ob-
stacle for the correct evaluation of this class of hadronic
contributions [30, 40, 91, 92], refs. [45, 46] have exploited
analyticity in a more refined way than [43]. In those
works the negative q2 region – where perturbative QCD
is supposed to be valid – has been used to further con-
strain the amplitude. Building on these works, together
with unitarity bounds [47], ref. [48] found a very small
e↵ect in the large-recoil region.

The second kind of contribution to the correlator in
eq. (4) originates from the triangle diagrams depicted in
Fig. 1 (b), in which the photon can be attached both
to the quark and antiquark lines and we have not drawn
explicitly the gluons exchanged between quark-antiquark
pairs. An example of an explicit hadronic contribution
of this kind is depicted in Fig. 1 (c).1 The DsD

⇤ pair
is produced by the weak decay of the initial B meson
with low momentum, so that no color transparency ar-
gument holds and rescattering can easily take place. Fur-
thermore, the recent observation of tetraquark states in
e+e� ! K(DsD

⇤ + D⇤
sD) by the BESIII collaboration

[94] confirms the presence of nontrivial nonperturbative
dynamics of the intermediate state.

One could think of applying dispersive methods also

1 See ref. [93] for a very recent estimate of similar diagrams with
up quarks, rather than charm quarks, in the internal loop.

When q2 is large enough to create
on-shell states, the amplitude has
poles

The rest should be analytic

Hλ = 1
ΠPi

∑
k α

λ
kz
k

1707.07305, 2011.09813, 2206.03797
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mental novelties discussed above. Adopting the model-
independent language of the Standard Model E↵ective
Theory (SMEFT) [82, 83], we present an updated anal-
ysis of |�B| = |�S| = 1 (semi)leptonic processes and
show that current data no longer provide strong hints for
NP. Indeed, updating the list of observables considered
in our previous global analysis [38] with the results in
eqs. (1) and (2), the only remaining measurements devi-
ating from SM expectations and not a↵ected by hadronic
uncertainties are the LUV ratios RKS

and RK⇤+ [7], for
which a re-analysis by the LHCb collaboration is manda-
tory in view of what discussed in [54, 55].

The anatomy of the B ! K(⇤)`+`� decay can be char-
acterized in terms of helicity amplitudes [24, 84], that in
the SM at a scale close to the bottom quark mass mb can
be written as:
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7,9,10 the SM Wilson coe�cients of

the semileptonic operators of the |�B| = |�S| = 1 weak
e↵ective Hamiltonian [85–87], normalized as in ref. [41].
The naively factorizable contributions to the above am-
plitudes can be expressed in terms of seven q2-dependent

form factors, eV0,±, eT0,± and eS [88, 89]. At the loop level,
non-local e↵ects parametrically not suppressed (neither
by small Wilson coe�cients nor by small CKM factors)
arise from the insertion of the following four-quark oper-
ator:

Qc
2 = (s̄L�µcL)(c̄L�

µbL) , (3)

that yields non-factorizable power corrections in H�
V via
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main contribution from the time-ordered product:

✏⇤µ(�)

m2
B

Z
d4x eiqxhK̄⇤|T {jµ

em(x)Qc
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em(x) the electromagnetic (quark) current.

This correlator receives two kinds of contributions.
The first corresponds to diagrams of the form of dia-
gram (a) in Fig. 1, where the initial B meson decays
to the K(⇤) plus a cc̄ state that subsequently goes into
a virtual photon. This contribution has been studied in
detail in the context of light-cone sum rules in the regime
q2 ⌧ 4m2

c in [43]; in the same reference, dispersion rela-
tions were used to extend the result to larger values of the
dilepton invariant mass. While the operator product ex-
pansion performed in ref. [43] was criticized in ref. [29],
and multiple soft-gluon emission may represent an ob-
stacle for the correct evaluation of this class of hadronic
contributions [30, 40, 91, 92], refs. [45, 46] have exploited
analyticity in a more refined way than [43]. In those
works the negative q2 region – where perturbative QCD
is supposed to be valid – has been used to further con-
strain the amplitude. Building on these works, together
with unitarity bounds [47], ref. [48] found a very small
e↵ect in the large-recoil region.

The second kind of contribution to the correlator in
eq. (4) originates from the triangle diagrams depicted in
Fig. 1 (b), in which the photon can be attached both
to the quark and antiquark lines and we have not drawn
explicitly the gluons exchanged between quark-antiquark
pairs. An example of an explicit hadronic contribution
of this kind is depicted in Fig. 1 (c).1 The DsD

⇤ pair
is produced by the weak decay of the initial B meson
with low momentum, so that no color transparency ar-
gument holds and rescattering can easily take place. Fur-
thermore, the recent observation of tetraquark states in
e+e� ! K(DsD

⇤ + D⇤
sD) by the BESIII collaboration

[94] confirms the presence of nontrivial nonperturbative
dynamics of the intermediate state.

One could think of applying dispersive methods also

1 See ref. [93] for a very recent estimate of similar diagrams with
up quarks, rather than charm quarks, in the internal loop.

When q2 is large enough to create
on-shell states, the amplitude has
poles

The rest should be analytic

Hλ = 1
ΠPi

∑
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λ
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k

to be determined from data
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From theory to unbinned analysis
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Figure 7: Two-dimensional profile likelihood scan of the Wilson coe�cients. Shaded areas
correspond to the one (68% CL) and two (95% CL) sigma contour regions. Dotted contours
in the top left plot assume right-handed Wilson coe�cients fixed to their SM values, i.e.
C0

9 = C0
10 = 0.

decay rate, d2�P/dq2dk2, both integrated over the k2. The determination of these angular522

observables o↵ers an important perspective for the validation and interpretation of the523

results. Figures 8 and 9 show the q2-dependent angular observables derived from the524

amplitude fit results. The contributions from non-local e↵ects to the so-called CP -averaged525

Si [27] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄
i , is also il-526

lustrated in the plots. In general, the post-fit determination of the angular observables527

agrees very well with the dedicated measurement of Ref. [9] and the overall impact of528

non-local hadronic contributions on the angular observables is found to be compatible529

between the two tested fit configurations. The only exception is observed in the S7 (P 0
6)530

observable, which is related to the imaginary part of the product of the longitudinal and531

parallel amplitudes, where the fit result that includes the theory points at q2 < 0 does532

not have enough freedom to fully accommodate the shape observed in the physical region.533

This is a reflection of the di↵erent behaviour of the imaginary part of H�(q
2) between the534

two fit configurations observed in Sec. 8.2. In addition, a closer look at the P 0
5 observable535
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Figure 5: 1 and 2� contours of the posterior samples of the CBSM
9 , CBSM

10 fit. All other

Wilson coe�cients are assumed SM-like. The strong dispersive bound is applied to

all samples. The pulls are 5.7�, 2.7� and 2.6� for B ! Kµ+µ� + Bs ! µ+µ�,

B ! K⇤µ+µ�, and Bs ! �µ+µ�, respectively.

discussed previously in the literature [85–89]. To compute the SM-pull in the marginalized

posterior plane, we approximate the posterior distributions with Gaussian mixture densities

and compute the isobar of the distribution corresponding to the SM point. We find pulls of

5.7�, 2.7� and 2.6� for B ! Kµ+µ� + Bs ! µ+µ�, B ! K⇤µ+µ�, and Bs ! �µ+µ�,

respectively.

A summary of our fit results is shown in the “BSM9,10” columns of Table 5. We observe

a small improvement of the goodness-of-fit in B ! K⇤µ+µ� with respect to the SM fit, as

expected from our previous comments. For Bs ! �µ+µ�, the improvement in the global

�2 value is also marginal, resulting in a smaller p value. However, as can be inferred from

the values in parenthesis, the best-fit point can now be obtained without distortion of the

hadronic parameters. The B ! Kµ+µ� fit is also improved in the presence of BSM physics,

but a tension remains. We find that the large �2 value is driven by Belle 2019 measurement of

the semi-leptonic branching ratio. Being in agreement with SM predictions, this measurement

is de facto in tension with the measurements of the other collaborations.

From our results we conclude that the non-local FFs are not the source of the tension

between SM predictions and data: floating these FFs is insu�cient to bring the three processes

in agreement with the SM. We also find that the local FFs are driving the uncertainties. For

the process Bs ! �µ+µ� in particular, the tension with the SM increases substantially when

we use light-meson LCSR results [29] instead of the the B-LCSR results [39] for the local FFs;

see the discussion in Section 4.1.
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uncertainties, while the dotted contours indicate the same regions with systematic uncertainties
included. The horizontal and vertical dotted lines show the Standard Model values.

presence of right-handed currents.729

This is the first direct measurement of C9⌧ , and the value of C9⌧ = �116 ± 264 ±730

98 is consistent with both zero and the SM expectation of lepton flavour universality,731

CSM
9⌧ = 4.27 [14]. The uncertainty on C9⌧ is dominated by statistical e↵ects. The largest732

systematic uncertainty, accounting for ⇠ 30% of the total uncertainty, arises from the733

constraint on the relative size of the B0 ! D(⇤)D̄(⇤)K⇤0 contributions, as detailed in734

section 2.5.1. The development of theory calculations that can be used to constrain the735

B0 ! D(⇤)D(⇤)(! µ+µ�)K⇤0 amplitudes would help improve sensitivity to C9⌧ in future736

measurements.737

The current best upper limit on B(B0 ! K⇤0⌧+⌧�) is 3.1 ⇥ 10�3 (90% C.L.) [64],738

corresponding to an upper limit of |C9⌧ | < 681 at 90% C.L. (assuming no New Physics739

contribution in C10⌧ ) or |C9⌧ | < 595 (assuming C10⌧ = �C9⌧ ). The 90% upper C.L. on |C9⌧ |740

from this work is |C9⌧ | < 501 (|C9⌧ | < 596 at 95% C.L.). To convert the upper limits on741

B(B0 ! K⇤0⌧+⌧�) in Ref. [64] to upper limits on |C9⌧ | the flavio package [65] was used,742

with local B0! K⇤0 form factors from Ref. [29] and subleading e↵ects parameterised as743

in Ref. [15].744

A number of cross-checks are performed to validate the results of this analysis. The745
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Wilson Coefficients
Biggest deviation is  with 

 at  from SM
C9

ΔCNP9 = − 0.71 2.1σ

15

Global significance  from SM∼ 1.5σ

LHCb-PAPER-2024-011,  
in preparation  

 dominates systematic 
uncertainty 
ℬ(B0 → J/ψK*0)

Table 4: Results for the Wilson coe�cients. The first uncertainty is statistical, while the second
is systematic.

Wilson coe�cient results
C9 3.56 ± 0.28 ± 0.18
C10 �4.02 ± 0.18 ± 0.16
C 0

9 0.28 ± 0.41 ± 0.12
C 0

10 �0.09 ± 0.21 ± 0.06
C⌧9 �116 ± 264 ± 98

asses this bias, pseudoexperiments are generated with the di↵erence between the open-676

charm components set to 1.5. These pseudoexperiments are then fitted twice, once677

with the baseline constraint-width, and once with an unbiased constraint-width of 1.5.678

The di↵erence in the fit results is assigned as a systematic, and besides the open-charm679

parameters, the main a↵ected parameters are C9 and C9⌧ , with systematic uncertainties680

of 24% and 29% of the statistical uncertainty respectively.681

5.5 Sub-dominant e↵ects682

The experimental resolution in the angles cos ✓`, cos ✓K , and � is not explicitly accounted683

for in the signal model. Unlike the q2 spectrum, however, the angular distributions contain684

no sharp peaks and are thus not greatly a↵ected by the detector resolution. Ensembles of685

pseudoexperiments emulating the e↵ects of the angular resolution were used to confirm686

that this has no significant e↵ects on the signal parameters of interest.687

The q2 resolution is accounted for in the baseline model as described in Sec. 3.3. The688

parameters of the resolution model are assumed to remain constant within each q2 region689

— an approximation that holds to varying degrees as a function of q2. Pseudoexperiments690

investigating the e↵ects of mismodelling the q2 resolution were performed and no significant691

e↵ects were observed to result from this assumption.692

After the full selection has been applied, the fraction of events that contain more693

than one candidate is approximately 0.18%. These events are unlikely to correspond694

to multiple true candidates and are not distributed evenly throughout the phase space.695

However, the distribution of events with multiple candidates is found to be well modelled696

in simulation, hence all candidates are retained in the subsequent analysis and a small697

systematic uncertainty related to their inclusion is determined from simulation.698

6 Results699

The full q2 spectrum resulting from the simultaneous fit is shown overlaid on the data in700

Fig. 5. The total PDF is decomposed into signal and background components, and the701

signal component is further decomposed into the contributions from local amplitudes, one-702

and two-particle nonlocal amplitudes, and the interference between them. The same results703

are shown with alternative signal decompositions in Figs. 18 and 19 in Appendix C.1.704

The optimal values of the Wilson Coe�cients C(0)
9,10 and C9⌧ are listed in Table 4. The705

corresponding one-dimensional likelihood profiles are shown in Fig. 6, wherein the 1�,706

2�, and 3� confidence intervals are indicated considering both statistical and systematic707
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2.1σ
0.6σ
0.7σ
0.4σ

0.4σ

New

In agreement with previous unbinned 
analysis  

Global significance 1.3 (1.4) σ

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by
the same rare-electroweak and tree-level underlying transitions, respectively, but with a
di↵erent spectator quark. The phase di↵erence of A (2S)

0 with respect to the rare mode
shows an almost complete degeneracy and cannot be determined precisely from the fit.

8.3 Wilson coe�cients

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together
with their confidence intervals (C.I.) and compatibility with the Standard Model. For each
of the four Wilson coe�cients, confidence intervals are built from the one-dimensional
profile likelihood scans shown in Fig. 6. The 68% (95%) C.I. range is identified with the
interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The
di↵erence between the best fit values and the corresponding SM predictions obtained are

�C9 = �0.93+0.53
�0.57 (�0.68+0.33

�0.46 ) ,

�C10 = 0.48+0.29
�0.31 ( 0.24+0.27

�0.28 ) ,

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 ) ,

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 ) ,

for the fit configuration without (with) constraints at negative q2, where the SM prediction
at the b-quark energy scale is taken to be CSM

9 = 4.27, CSM
10 = �4.17 and C 0 SM

9,10 = 0 [29, 30].
The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose
compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,
for fit models using only q2 > 0 information and with the q2 < 0 constraints, respectively.

Two-dimensional profile likelihood contours for the Wilson coe�cients are shown in
Fig. 7, where the 68% (95%) C.I. range is identified with the region where the �NLL is
smaller than 1.15 (3.09). A shift of approximately 0.2 is observed in the central values
of all the Wilson coe�cients between the two fit configurations, with the fit result with
the q2 < 0 constraints being closer to the SM. While from a theoretical perspective one
could expect that non-local hadronic contributions would only a↵ect C9, the experimental
determination of the Wilson coe�cients is a↵ected by the strong correlations of the system:
a modification of the non-local hadronic contributions is found to influence the result
on the form factors (as shown in Fig. 4), which in turn have an impact on the Wilson
coe�cients. This behaviour has been studied with pseudoexperiments, where the same
generated dataset is fitted with and without the constraints at negative q2 replicating the
procedure adopted on data, and the variation measured in data is found to be compatible
with what is observed in the pseudoexperiments.

Finally, the global compatibility with respect to the SM is evaluated by inspecting the
likelihood di↵erence in the four-dimensional space given by the four considered Wilson
coe�cients. Taking into account the systematic uncertainties, the observed di↵erence
in twice the log-likelihood between the best fit and SM point is found to be 2.99 (3.25).
Considering the four degrees of freedom of the system, this corresponds to 1.3 (1.4)
standard deviations with respect to the SM, for the fit without (with) the negative q2

constraints.
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1.9 (1.8) σ

1.5 (0.9) σ
0.9 (0.5) σ

1.5 (1.0) σ

Table 5: Best fit value, confidence intervals and deviation from the SM predictions [29,30] for
the four Wilson coe�cients and the two fit configurations. For each Wilson coe�cient, the
likelihood has been profiled over the other coe�cients. The SM predictions at the b-quark energy
scale [29, 30] are also reported for reference.

q2 > 0 only

best fit
value

68% C.I. 95% C.I. SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.27 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.17 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 constraints

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.27 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.17 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.4 Comparison to binned observables

Conventional angular observables accessed by binned angular analyses [7–9] can be
determined from the fit results by dividing the angular coe�cients, Ii(q

2, k2), by the
di↵erential decay rate, d2�P/dq2dk2, both integrated over k2. The determination of these
angular observables o↵ers an important perspective for the validation and interpretation
of the results. Figures 8 and 9 show the q2-dependent angular observables derived from
the amplitude fit results. The contributions from non-local e↵ects to the so-called CP -
averaged Si [32] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄

i ,
is also illustrated in the plots. In general, the post-fit determination of the angular
observables agrees very well with the dedicated measurement of Ref. [9] and the overall
impact of non-local hadronic contributions on the angular observables is found to be
compatible between the two tested fit configurations. The only exception is observed
in the S7 (and the related P 0

6) observable, which is related to the imaginary part of the
product of the longitudinal and parallel amplitudes, where the fit result that includes
the theory points at q2 < 0 does not have enough freedom to fully accommodate the
shape observed in the physical region. This is a reflection of the di↵erent behaviour of
the imaginary part of H�(q

2) between the two fit configurations observed in Sec. 8.2. In
addition, a closer look at the P 0

5 observable indicates that non-local hadronic contributions
are responsible for a positive shift in P 0

5 of the order of 0.1 ± 0.1 in the region between 4
and 8 GeV2/c4. This is found to be true for both the fit configurations with and without
the q2 < 0 constraints, with the latter characterised by a naturally larger uncertainty.

Similarly, the signal branching fraction can be derived from the amplitude fit parameters
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could expect that non-local hadronic contributions would only a↵ect C9, the experimental
determination of the Wilson coe�cients is a↵ected by the strong correlations of the system:
a modification of the non-local hadronic contributions is found to influence the result
on the form factors (as shown in Fig. 4), which in turn have an impact on the Wilson
coe�cients. This behaviour has been studied with pseudoexperiments, where the same
generated dataset is fitted with and without the constraints at negative q2 replicating the
procedure adopted on data, and the variation measured in data is found to be compatible
with what is observed in the pseudoexperiments.

Finally, the global compatibility with respect to the SM is evaluated by inspecting the
likelihood di↵erence in the four-dimensional space given by the four considered Wilson
coe�cients. Taking into account the systematic uncertainties, the observed di↵erence
in twice the log-likelihood between the best fit and SM point is found to be 2.99 (3.25).
Considering the four degrees of freedom of the system, this corresponds to 1.3 (1.4)
standard deviations with respect to the SM, for the fit without (with) the negative q2

constraints.
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Table 5: Best fit value, confidence intervals and deviation from the SM predictions [29,30] for
the four Wilson coe�cients and the two fit configurations. For each Wilson coe�cient, the
likelihood has been profiled over the other coe�cients. The SM predictions at the b-quark energy
scale [29, 30] are also reported for reference.

q2 > 0 only

best fit
value

68% C.I. 95% C.I. SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.27 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.17 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 constraints

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.27 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.17 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.4 Comparison to binned observables

Conventional angular observables accessed by binned angular analyses [7–9] can be
determined from the fit results by dividing the angular coe�cients, Ii(q

2, k2), by the
di↵erential decay rate, d2�P/dq2dk2, both integrated over k2. The determination of these
angular observables o↵ers an important perspective for the validation and interpretation
of the results. Figures 8 and 9 show the q2-dependent angular observables derived from
the amplitude fit results. The contributions from non-local e↵ects to the so-called CP -
averaged Si [32] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄

i ,
is also illustrated in the plots. In general, the post-fit determination of the angular
observables agrees very well with the dedicated measurement of Ref. [9] and the overall
impact of non-local hadronic contributions on the angular observables is found to be
compatible between the two tested fit configurations. The only exception is observed
in the S7 (and the related P 0

6) observable, which is related to the imaginary part of the
product of the longitudinal and parallel amplitudes, where the fit result that includes
the theory points at q2 < 0 does not have enough freedom to fully accommodate the
shape observed in the physical region. This is a reflection of the di↵erent behaviour of
the imaginary part of H�(q

2) between the two fit configurations observed in Sec. 8.2. In
addition, a closer look at the P 0

5 observable indicates that non-local hadronic contributions
are responsible for a positive shift in P 0

5 of the order of 0.1 ± 0.1 in the region between 4
and 8 GeV2/c4. This is found to be true for both the fit configurations with and without
the q2 < 0 constraints, with the latter characterised by a naturally larger uncertainty.

Similarly, the signal branching fraction can be derived from the amplitude fit parameters
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Tom HadavizadehMoriond QCD Figure 7: Two-dimensional likelihood profiles for selected combinations of the Wilson Coe�-

cients C(0)
9,10. The shaded regions indicate the 1� and 3� contours considering only statistical

uncertainties, while the dotted contours indicate the same regions with systematic uncertainties
included. The horizontal and vertical dotted lines show the Standard Model values.

presence of right-handed currents.729

This is the first direct measurement of C9⌧ , and the value of C9⌧ = �116 ± 264 ±730

98 is consistent with both zero and the SM expectation of lepton flavour universality,731

CSM
9⌧ = 4.27 [14]. The uncertainty on C9⌧ is dominated by statistical e↵ects. The largest732

systematic uncertainty, accounting for ⇠ 30% of the total uncertainty, arises from the733

constraint on the relative size of the B0 ! D(⇤)D̄(⇤)K⇤0 contributions, as detailed in734

section 2.5.1. The development of theory calculations that can be used to constrain the735

B0 ! D(⇤)D(⇤)(! µ+µ�)K⇤0 amplitudes would help improve sensitivity to C9⌧ in future736

measurements.737

The current best upper limit on B(B0 ! K⇤0⌧+⌧�) is 3.1 ⇥ 10�3 (90% C.L.) [64],738

corresponding to an upper limit of |C9⌧ | < 681 at 90% C.L. (assuming no New Physics739

contribution in C10⌧ ) or |C9⌧ | < 595 (assuming C10⌧ = �C9⌧ ). The 90% upper C.L. on |C9⌧ |740

from this work is |C9⌧ | < 501 (|C9⌧ | < 596 at 95% C.L.). To convert the upper limits on741

B(B0 ! K⇤0⌧+⌧�) in Ref. [64] to upper limits on |C9⌧ | the flavio package [65] was used,742

with local B0! K⇤0 form factors from Ref. [29] and subleading e↵ects parameterised as743

in Ref. [15].744

A number of cross-checks are performed to validate the results of this analysis. The745
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Preliminary 

Preliminary Preliminary 

Preliminary 

Wilson Coefficients
Biggest deviation is  with 

 at  from SM
C9

ΔCNP9 = − 0.71 2.1σ

15

Global significance  from SM∼ 1.5σ

LHCb-PAPER-2024-011,  
in preparation  

 dominates systematic 
uncertainty 
ℬ(B0 → J/ψK*0)

Table 4: Results for the Wilson coe�cients. The first uncertainty is statistical, while the second
is systematic.

Wilson coe�cient results
C9 3.56 ± 0.28 ± 0.18
C10 �4.02 ± 0.18 ± 0.16
C 0

9 0.28 ± 0.41 ± 0.12
C 0

10 �0.09 ± 0.21 ± 0.06
C⌧9 �116 ± 264 ± 98

asses this bias, pseudoexperiments are generated with the di↵erence between the open-676

charm components set to 1.5. These pseudoexperiments are then fitted twice, once677

with the baseline constraint-width, and once with an unbiased constraint-width of 1.5.678

The di↵erence in the fit results is assigned as a systematic, and besides the open-charm679

parameters, the main a↵ected parameters are C9 and C9⌧ , with systematic uncertainties680

of 24% and 29% of the statistical uncertainty respectively.681

5.5 Sub-dominant e↵ects682

The experimental resolution in the angles cos ✓`, cos ✓K , and � is not explicitly accounted683

for in the signal model. Unlike the q2 spectrum, however, the angular distributions contain684

no sharp peaks and are thus not greatly a↵ected by the detector resolution. Ensembles of685

pseudoexperiments emulating the e↵ects of the angular resolution were used to confirm686

that this has no significant e↵ects on the signal parameters of interest.687

The q2 resolution is accounted for in the baseline model as described in Sec. 3.3. The688

parameters of the resolution model are assumed to remain constant within each q2 region689

— an approximation that holds to varying degrees as a function of q2. Pseudoexperiments690

investigating the e↵ects of mismodelling the q2 resolution were performed and no significant691

e↵ects were observed to result from this assumption.692

After the full selection has been applied, the fraction of events that contain more693

than one candidate is approximately 0.18%. These events are unlikely to correspond694

to multiple true candidates and are not distributed evenly throughout the phase space.695

However, the distribution of events with multiple candidates is found to be well modelled696

in simulation, hence all candidates are retained in the subsequent analysis and a small697

systematic uncertainty related to their inclusion is determined from simulation.698

6 Results699

The full q2 spectrum resulting from the simultaneous fit is shown overlaid on the data in700

Fig. 5. The total PDF is decomposed into signal and background components, and the701

signal component is further decomposed into the contributions from local amplitudes, one-702

and two-particle nonlocal amplitudes, and the interference between them. The same results703

are shown with alternative signal decompositions in Figs. 18 and 19 in Appendix C.1.704

The optimal values of the Wilson Coe�cients C(0)
9,10 and C9⌧ are listed in Table 4. The705

corresponding one-dimensional likelihood profiles are shown in Fig. 6, wherein the 1�,706

2�, and 3� confidence intervals are indicated considering both statistical and systematic707

23

2.1σ
0.6σ
0.7σ
0.4σ

0.4σ

New

In agreement with previous unbinned 
analysis  

dominates
systematic uncertainty

Global significance 1.3(1.4)σ

2312.09102, 2312.09115
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Is that all?

Is this parametrisation capturing all possible structures?

⇒ Is the analytic structure of the non-local amplitudes different?
2




























ci và

a È Èb s

r

(b) (c)

(2)


 (1)

(2)

(1)

(a)

FIG. 1. Example of charming-penguin diagrams contributing to the B ! K(⇤)`+`� amplitude. Diagram (a) represents the
class of charming-penguin amplitudes related to c � c̄ state that subsequently goes into a virtual photon, see refs. [43, 45–48].
Diagram (b) and (c) represent the kind of contributions from rescattering of intermediate hadronic states, at the quark and

meson level respectively. The phenomenological relevance of rescattering for the SM prediction of the B ! K(⇤)`+`� decays
has been recently considered in ref. [38].

mental novelties discussed above. Adopting the model-
independent language of the Standard Model E↵ective
Theory (SMEFT) [82, 83], we present an updated anal-
ysis of |�B| = |�S| = 1 (semi)leptonic processes and
show that current data no longer provide strong hints for
NP. Indeed, updating the list of observables considered
in our previous global analysis [38] with the results in
eqs. (1) and (2), the only remaining measurements devi-
ating from SM expectations and not a↵ected by hadronic
uncertainties are the LUV ratios RKS

and RK⇤+ [7], for
which a re-analysis by the LHCb collaboration is manda-
tory in view of what discussed in [54, 55].

The anatomy of the B ! K(⇤)`+`� decay can be char-
acterized in terms of helicity amplitudes [24, 84], that in
the SM at a scale close to the bottom quark mass mb can
be written as:

H�
V /

⇢
CSM

9
eVL� +

m2
B

q2


2mb

mB
CSM

7
eTL� � 16⇡2h�

��
,

H�
A / CSM

10
eVL� , HP / m` mb

q2
CSM

10

✓
eSL � ms

mb

eSR

◆
,

with � = 0, ± and CSM
7,9,10 the SM Wilson coe�cients of

the semileptonic operators of the |�B| = |�S| = 1 weak
e↵ective Hamiltonian [85–87], normalized as in ref. [41].
The naively factorizable contributions to the above am-
plitudes can be expressed in terms of seven q2-dependent

form factors, eV0,±, eT0,± and eS [88, 89]. At the loop level,
non-local e↵ects parametrically not suppressed (neither
by small Wilson coe�cients nor by small CKM factors)
arise from the insertion of the following four-quark oper-
ator:

Qc
2 = (s̄L�µcL)(c̄L�

µbL) , (3)

that yields non-factorizable power corrections in H�
V via

the hadronic correlator h�(q2) [26, 30, 90], receiving the
main contribution from the time-ordered product:

✏⇤µ(�)

m2
B

Z
d4x eiqxhK̄⇤|T {jµ

em(x)Qc
2(0)}|B̄i , (4)

with jµ
em(x) the electromagnetic (quark) current.

This correlator receives two kinds of contributions.
The first corresponds to diagrams of the form of dia-
gram (a) in Fig. 1, where the initial B meson decays
to the K(⇤) plus a cc̄ state that subsequently goes into
a virtual photon. This contribution has been studied in
detail in the context of light-cone sum rules in the regime
q2 ⌧ 4m2

c in [43]; in the same reference, dispersion rela-
tions were used to extend the result to larger values of the
dilepton invariant mass. While the operator product ex-
pansion performed in ref. [43] was criticized in ref. [29],
and multiple soft-gluon emission may represent an ob-
stacle for the correct evaluation of this class of hadronic
contributions [30, 40, 91, 92], refs. [45, 46] have exploited
analyticity in a more refined way than [43]. In those
works the negative q2 region – where perturbative QCD
is supposed to be valid – has been used to further con-
strain the amplitude. Building on these works, together
with unitarity bounds [47], ref. [48] found a very small
e↵ect in the large-recoil region.

The second kind of contribution to the correlator in
eq. (4) originates from the triangle diagrams depicted in
Fig. 1 (b), in which the photon can be attached both
to the quark and antiquark lines and we have not drawn
explicitly the gluons exchanged between quark-antiquark
pairs. An example of an explicit hadronic contribution
of this kind is depicted in Fig. 1 (c).1 The DsD

⇤ pair
is produced by the weak decay of the initial B meson
with low momentum, so that no color transparency ar-
gument holds and rescattering can easily take place. Fur-
thermore, the recent observation of tetraquark states in
e+e� ! K(DsD

⇤ + D⇤
sD) by the BESIII collaboration

[94] confirms the presence of nontrivial nonperturbative
dynamics of the intermediate state.

One could think of applying dispersive methods also

1 See ref. [93] for a very recent estimate of similar diagrams with
up quarks, rather than charm quarks, in the internal loop.

• Rescattering diagrams are
known to have a different
analytic structure

• How large can these
contributions be?

Preliminary estimates:

7Arianna Tinari (University of Zürich)  |  Beyond the Flavour Anomalies @ Siegen, 9-11 April 2024

Charm rescattering in B → Kℓ̄ℓ
- We cannot exclude a sizable long-distance contribution with a 

reduced - or - dependence which would mimic a short-
distance effect. 


- For this reason, we tried to estimate the rescattering 
contribution from the leading two-body intermediate state  
and .

q2 λ

DsD*
D*s D

from data

from HHChiPT 
+ QED

from 
HHChiPT 

…

- We estimate this diagram using data on 
 and Heavy Hadron Chiral 

Perturbation Theory (valid for soft kaons).


- Our result is most reliable close to the  
end-point (small kaon momentum), and 
satisfies constraints from gauge invariance.


- The absorptive part is finite and “exact” (no 
approximations) at the end-point.

B → DD*

q2

• Reliable at the endpoint
• Preliminary estimate∣∣∣∣∆C9

C9

∣∣∣∣ ≤ 3%

• Extrapolation to the low q2 region is WIP
• Importance of data ad high q2

2212.10516

Isidori, Polonsky, Tinari
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Patterns in b→ sµ+µ− transitions
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EFT for b decays

Energy (Λ)

Λ ∼ mt

Λ ∼ mb

b su, c, t

W

γ, Z

ℓ+

ℓ−

b

s

!+

!−

A(Hb → Hs) = 〈Hs|LSM|Hb〉

A(Hb → Hs) = 4GF√
2

∑ Ci(µ)〈Hs|Oi|Hb〉

matching
and

running
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b → s``

b su, c, t

W

γ, Z

ℓ+

ℓ−

b

s

!+

!−

Heff = −4
GF√

2
VtbV

∗
ts [−C1O1 − C2O2 + C7O7 + C9O9 + C10O10]

O1 = (s̄γµPLb) (c̄γµc) O2 = (s̄γµT aPLb) (c̄γµT
ac)

O9 = (s̄γµPLb) (¯̀γµ`) O10 = (s̄γµPLb) (¯̀γµγ5`)

O7 = (s̄σµνPRb)Fµν

• Wilson coefficients are calculated at NNLO
Gorbahn, Haisch, ’04, Bobeth, Gambino, Gorbahn, Haisch, ’11

• The running to µ = mb is known
15/17



The z-expansion and unitarity

• in the complex plane form factors are real
analytic functions

• q2 is mapped onto the conformal complex
variable z

z(q2, t0) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

• q2 is mapped onto a disk in the complex z
plane, where |z(q2, t0)| < 1

Fi =
1

Pi(z)φi(z)

ni∑
k=0

aikz
k

ni∑
k=0

|aik|2 < 1

Im(z)

Re(z)

semileptonic

region

subthreshold
resonances

q2
min

q2
max

q2 = t+

[Boyd, Grinstein, Lebed, ’95, Caprini, Lellouch, Neubert, ’98]
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Lepton Flavour Universality violation

RX =
B(Hb → Xµ+µ−)

B(Hb → Xe+e−)

• Test of Lepton Flavour Universality,
which is one of the building principles
of the SM

• With ratios, we reduce hadronic
uncertainties at large extent

• For q2 � m2
` → RX = 1

• Leading theoretical uncertainty
coming from QED effects ∼ 1%

MB, Isidori, Pattori, ’16
Isidori, Lancerini, Nabeebaccus, Zwicky, ’22
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