## Quench Characteristics of EUCARD-2 Roebel Cable Pancake Coil

Jorge Pelegrin, Qingbo Zhang, Wendell Bailey, Yifeng Yang

#### Institute of Cryogenics, University of Southampton, UK

Acknowledgement: Bruker Advanced Superconductors Anna Kario KIT EuCARD2



Quench Characteristics of Roebel Pancake Coil



# Contents

- Background
- Roebel cable and pancake coil construction
- Experimental setup
- Results
- Discussion
  - Adiabatic quench attainable?
  - MQE: cable vs single tape
  - Measurement at different temperatures and fields
  - A better understanding through modelling
- Conclusions





# Background

- Challenges to quench measurement of Roebel cables
  - Current sharing at a length scale of the transposition pitch, much longer than the MPZ of a single strand
  - The "standard" 1D adiabatic quench measurement requires sample length of multiples pitch length about 1m long: difficult to realise experimentally
  - Use pancake as compromise and the quench behaviour becomes 2D: more complex but better relevance to coils
- A robust coil construction with *insultation* is needed
  - Strands able to withstand multiple thermal cycles
  - Uniform current injection with sufficient low contact resistances





#### EuCARD2 Roebel Cable by KIT Courtesy of A Kario



- Punch + Coat
- Assembled
- 2 m long
- 15 transposed strands at a pitch of 226mm
- Rough surface prevents dense packing
  - Delamination is caused during grinding/polishing of cross-section preparation





Quench Characteristics of Roebel Pancake Coil



# Strands, Conductor and Coil Performance

- Bruker 2G YBCO strands with doping for enhanced pinning (and a relative low  $I_c(4mm) = 60A$  at 77K)
- $I_c \sim 30A$  at 80mT perpendicular and 120mT parallel fields
- 15 strands assembled into a Roebel cable with a pitch of 226mm
- The coil critical current is around 465A





University of

outhampton

5

# Pancake Coil Construction



- G10 former with a cylindrical inner current injection terminal
- Insert inner copper contact machined precisely for the first turn of winding
- Wind and solder the first turn on the copper contact, via exposed transposition area to every strand equally with the superconductor side facing the copper
- Continue winding with a layer of fibre-glass insulation
- Attach instrumentation/heater during
- Insert the outer copper contact to a whole turn from below
- Wind the last turn on the outer copper contact and solder the strands
- Epoxy impregnation





**Ouench Characteristics of Roebel Pancake Coil** 

# Instrumentations and Experimental Setup





University of

outhampton

# A Typical Quench Measurement in LN<sub>2</sub>

- Heater power limited to ~<1.1W
- Heater pulse length increased gradually until irreversible quench was reached
- Reproducible T(t) and V(t) for given pulse power and length
- Refine heater pulse length to find Minimum Quench Energy (MQE)
- V<sub>Q</sub> for the voltage minimum at the heated spot before quenching irreversibly
- T<sub>H</sub> for maximum temperature at the heated spot at the end of the heater pulse
- T<sub>Q</sub> for the minimum temperature at the heated spot before quenching irreversibly
- V(t) is more sensitive for quench detection

Hot spot voltage (V7) and temperature (T7) at different pulse length



University of

outhampton

8



Quench Characteristics of Roebel Pancake Coil

# Measurement of MQE at Different Heater Power





Quench Characteristics of Roebel Pancake Coil

9 University of Southampton

# Quench and Stability at 77K with Different Heater Power





Quench Characteristics of Roebel Pancake Coil

10

Southampton

#### MQE at Different Current ~ 100x single tape's: in line with 2D with coil composite





Quench Characteristics of Roebel Pancake Coil



## Measurement at Different Temperatures in Helium Vapour in External Fields







### Measurement at Low Temperatures 700A at 66K / 2T

- Critical Current: ~750A on inner turns
- No quench was obtained at 600A with 27J heater energy
- Quench at 700A with 6.5J deposited on strand #7
  - ➢ Hot spot reached 96K
  - Hot spot voltage at 1.4mV
  - Current reduced in the heated strand by current sharing
  - All the strands quenched



University of

Southampton

13



Quench Characteristics of Roebel Pancake Coil

## Measurement at Low Temperatures 700A at 66K / 2T

Minimum quench energy (MQE) for 700A at 66K in 2T is ~ 5.5J





Quench Characteristics of Roebel Pancake Coil

<sup>14</sup> University of **Southampton** 

## Measurement at Low Temperatures 1100A at 58K / 3T

- □ Critical Current: ~1250A or inner turns
- Quench at 1100A with
   10.4J deposited on strand
   #7 at 1W heat power
  - ➢ Hot spot T<sub>H</sub> ~ 90K
  - Hot spot voltage at 1.5mV
- Quench at 1100A with
   8.5J deposited on strand
   #7 at 1.8W heat power
  - ➢ Hot spot above 110K
  - Hot spot voltage at 1.3mV
  - Almost at MQE



15

Southampton



## Measurement at Low Temperatures 1200A at 58K / 3T





16

University of

Southampton

## Measurement at Low Temperatures 1000A at 58K / 3T

- Quench at 1000A with
   12.1J deposited on strand
   #7 at 1.8W heat power
  - ➢ Hot spot at 110K
  - Hot spot voltage at 2.3mV
  - Close to MQE
- Quench at 1000A with
   14.4J deposited on strand
   #7 at 1.8W heat power
  - ➢ Hot spot above 110K
  - Hot spot voltage at 3.5mV
  - Fast quench ensued and with strands reaching 25mV per pitch length in less that 6s





17 University of Southampton

# 8T/50K

- 1. Critical current ~> 1600A
- 2. Minimum quench energy show unexpected large increase (31J @1500A)
- 3. Quench dynamics changed significantly too with a fast propagation (5m/s) and more difficult to catch "quasi-stable" MPZ





#### MQE at Different Current ~ 100x single tape's: in line with 2D with coil composite





19



# Learn More Using Modelling

Supercond. Sci. Technol. 34 (2021) 105002 (16pp)

https://doi.org/10.1088/1361-6668/ac1bf7

#### Quench in a pancake coil wound with REBCO Roebel cable: model and validation

#### Lorenzo Cavallucci<sup>1,\*</sup><sup>(b)</sup>, Marco Breschi<sup>1</sup><sup>(b)</sup>, Pier Luigi Ribani<sup>1</sup>, Qingbo Zhang<sup>2</sup> and Yifeng Yang<sup>2</sup>

 <sup>1</sup> Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy
 <sup>2</sup> Institute of Cryogenics, Faculty of Engineering and the Environment, University of Southampton, SO18 Southampton, United Kingdom

- 1. Accounts for individual transposed strands
- 2. Efficient 1D thermal-electrical model with lateral current and heat conduction
  - Allowing continuous electrical and thermal contacts for current sharing according to transposition and thermal distribution
  - Enabling turn-to-turn pancake model with thermal contacts to co-wound insulation instead homogenised coil composites
- 3. Only two adjustable parameters: thermal and electrical contact resistivity





University of

uthampton

# **Electrical Model**





21

Universitv of

outhampton

# Thermal Model with Turn-by-Turn Winding



## Parameters

| Fixed parameters                                                     |                                                   |                                   |  |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|--|--|--|--|
| Таре                                                                 | e geometrical parameters                          |                                   |  |  |  |  |
| Thickness                                                            | Copper<br>YBCO<br>Buffer layer<br>Stainless steel | 50 μm<br>1 μm<br>0.2 μm<br>100 μm |  |  |  |  |
| Width<br>Copper RRR                                                  |                                                   | 5.8 mm<br>30                      |  |  |  |  |
| Tape                                                                 | critical current parameters                       | \$                                |  |  |  |  |
| <i>Ic</i> <sub>0</sub><br><i>n</i> -value                            |                                                   | 57.2<br>20                        |  |  |  |  |
|                                                                      | Roebel cable                                      |                                   |  |  |  |  |
| Transposition p<br>Transposition an<br>Cable width<br>Strands number | itch $T_p$<br>ngle $T_{\theta}$                   | 226 mm<br>50°<br>12 mm<br>15      |  |  |  |  |

#### Pancake geometry

| Pancake Coil                                         |               |  |  |  |  |
|------------------------------------------------------|---------------|--|--|--|--|
| Turns number                                         | 7             |  |  |  |  |
| Inner radius                                         | 72 mm         |  |  |  |  |
| Inter-strand insulation layer $\delta_{ins}$         | $200 \ \mu m$ |  |  |  |  |
| Top pancake insulation layer $\delta_{\text{ins},s}$ | 500 µm        |  |  |  |  |

#### Adjustable parameters

|                           | Initial guess                                   |          |                    |        |
|---------------------------|-------------------------------------------------|----------|--------------------|--------|
| $\sigma_{ m el}^{\  m c}$ | $2.0 	imes 10^7 \ \mathrm{S} \ \mathrm{m}^{-2}$ | 0.1%     | sporadic point cor | ntacts |
| $R_{\rm th}^{\rm c}$      | $7.0 \times 10^{-4} \text{ Km}^2$               | $W^{-1}$ | 0.1mm epoxy        |        |

Clean copper contacts:  $\sigma_{\rm el}^c \sim 10^{11} {\rm Sm}^{-2}$ Ambient oxidised:  $\sigma_{\rm el}^c \sim 3 \times 10^{10} {\rm Sm}^{-2}$ 





# Quench at $I_{OP}$ =444A in LN<sub>2</sub>





24 Southampton

University of

## Quench at Different Heater Power and Global Stability





Quench Characteristics of Roebel Pancake Coil

25

Southampton

## Temperature Distribution and the Effect of Transposition



# Strands' Voltages



# **Current Sharing during Heater Pulse**





28

University of

Southampton

# Conclusions

- Robust pancake coil construction
- 2D adiabatic guench realised
- Roebel quenches with higher MQE of increased number of tapes and 2D effect
- A strand-by-strand and turn-by-turn cable/coil model for quench

Thanks for your attention!





hampton