

MInternational UON Collider Collaboration

Updated Magnet Limitations for the Collider Ring

D. Novelli^{1,2}, L. Alfonso², A. Bersani², L. Bottura⁵, B. Caiffi², S. Farinon², S. Mariotto³, A. Pampaloni², T. Salmi⁴

¹Sapienza University of Rome , ²INFN – Genoa , ³INFN and University of Milan, ⁴Tampere University , ⁵CERN

27 June 2024

INTRODUCTION TO A-B PLOTS

More <u>h</u> material: <u>h</u>

https://indico.cern.ch/event/1325963/contributions/5791457/ https://indico.cern.ch/event/1325963/contributions/5837724/ https://indico.cern.ch/event/1325963/contributions/5798926/ https://indico.cern.ch/event/1353612/contributions/5775143/ https://ieeexplore.ieee.org/document/10387716

Need for high fields in large apertures

 We perform plots that can show the allowed area between aperture diameter (A) and bore field (B).

Dipole - ReBCO @ T op = 20 K

 Innovative approach, useful for interfacing the needs of beam dynamics with the technological limits (of today and the near future) related to superconducting magnets.

 Immediate feedback capable of analyzing many possible configurations in a single plot

27 June 2024

INTRODUCTION TO A-B PLOTS

More https://indico.cern.ch/event/1325963/contributions/5791457/ https://indico.cern.ch/event/1325963/contributions/5837724/ https://indico.cern.ch/event/1325963/contributions/5798926/ https://indico.cern.ch/event/1353612/contributions/5775143/ https://ieeexplore.ieee.org/document/10387716

Need for high fields in large apertures

- We perform plots that can show the allowed area between aperture diameter (A) and bore field (B).
- Limit curves are introduced by mechanical challenges (stress limit), critical current density (margin limit) and stored magnetic energy (quench protection), depending on the superconducting material.

COLLIDER MAGNETS REQUIREMENTS

A-B PLOTS BEHAVIOUR FOR HTS

A reduction of operating temperature will result in wider design A-B range

The curves shown in the plots are the limit curves, i.e., for each aperture value the strictest limit is taken, excluding the limit for insulated magnets. Reducing the cost of HTS or a larger budget will result in a wider A-B range. (next slides)

A-B PLOTS FOR HTS DIPOLES

Summary of cost assumptions:

- We use the ReBCO's aspirational cost 2500 EUR/kg
 - Today's price is around 8000 EUR/kg
- The starting budget of 175 kEUR/m for each magnet is taken from the FCC cost model
 - We can assume a higher budget than FCC because we have a smaller circumference and less magnets.
- Cryogenic, protection and shielding costs are not taken into account.

Summary of technical assumptions:

- Single sector coil
- Maximum allowed stress: 400 MPa
- Fujikura Tape, Roebel cable
- Non-insulated or Metal-insulated cable
- Maximum coil width: 80 mm

Daniel Novelli - mmWG

A-B PLOTS FOR HTS DIPOLES

27 June 2024

Daniel Novelli - mmWG

Summary of cost assumptions:

- We use the ReBCO's aspirational cost 2500 EUR/kg
 - Today's price is around 8000 EUR/kg
- The starting budget of 175 kEUR/m is taken from the FCC cost model
 - We can assume a higher budget than FCC because we have a smaller circumference and less magnets.
- Cryogenic, protection and shielding costs are not taken into account.

Summary of technical assumptions:

- Single sector coil
- Maximum allowed stress: 400 MPa
- Fujikura Tape, Roebel cable
- Non-insulated or Metal-insulated cable
- Maximum coil width: 80 mm

Name	L	Upstream	Downstrea m	Magnet aperture radius [cm]	Gradient [T/m]
IQF2	6	9.81	9.20	14	85.2
IQF2_1	6	9.12	8.84	13.3	85.2
IQD1	9	8.98	10.33	14.5	-115.4
IQD1_1	9	10.28	6.12	14.5	-115.4
IQF1B	2	5.91	4.62	10.2	205.1
IQF1A	3	4.45	2.97	8.6	241.8
IQF1	3	2.84	1.78	7	300.2

27 June 2024

Daniel Novelli - mmWG

CONCLUSION

10

). Calzolari Dynamic beam aperture [cm]				operating 1 of 20 K, maximum budget of 400		
Name	L	Upstream	Downstrea m	Magnet aperture radius [cm]	Gradient [T/m]	 In the allowed area @20 K, more than 40
IQF2	6	9.81	9.20	14	85.2	• @10K, less than 400 l
IQF2_1	6	9.12	8.84	13.3	85.2	• In the allowed area
IQD1	9	8.98	10.33	14.5	-115.4	
IQD1_1	9	10.28	6.12	14.5	-115.4	
IQF1B	2	5.91	4.62	10.2	205.1	
IQF1A	3	4.45	2.97	8.6	241.8	• On the limit curve
IQF1	3	2.84	1.78	7	300.2	• @10 K, more than 400
Dynamic beam aperture [cm]		im aperture			Outside the allowed area	
Name	L	Upstream	Downstrea m	Magnet aperture radius [cm]	B field [T]	 In the allowed area @20 K, less than 400 k
IB2	6	8.71	9.00	16	8.1	• In the allowed area
IB1	10	9.02	9.49	16	-9.7	• @20 K, more than 400
IB3	6	9.51	9.79	16	8.1	

Baseline:

operating T of 20 K, maximum budget of 400 kEUR/m for each magnet

at in the

NINTERNATIONAL UON Collider Collaboration

Thank you for your attention

