
Efficiency Measurements at the CMS High Level Trigger

Andrew Bower – Rose Hulman Institute of Technology Advisors: Dr. Pietro Govoni, Leonardo Di Matteo, and Andrea Benaglia

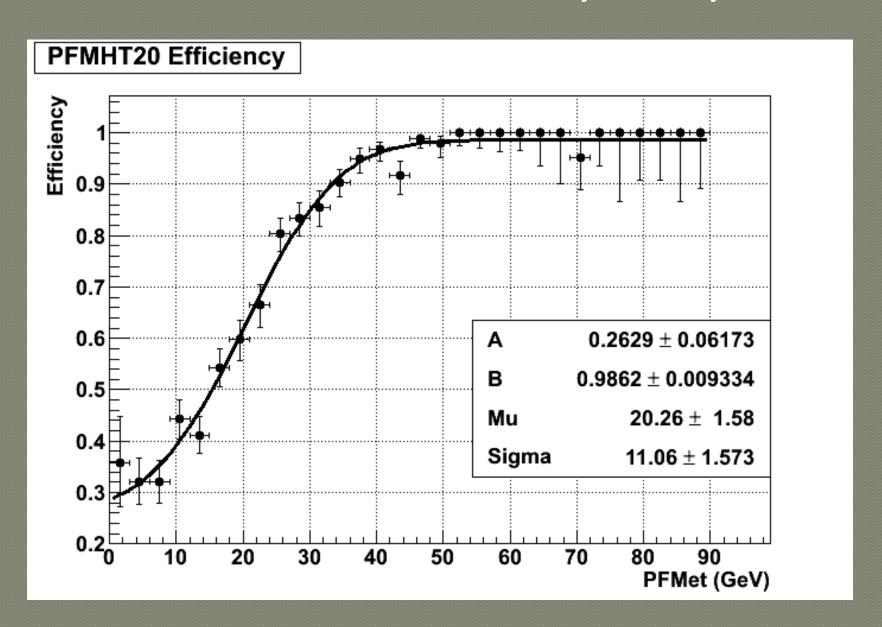
Overview

- CMS Trigger
- Update on missing transverse energy trigger
- Work in progress

CMS Trigger

Level-1 Trigger (L1T) –Hardware – 40 MHz to100 kHz

High Level Trigger
 (HLT) – loose software
 reconstruction – 100
 kHz to ~100 Hz


Trigger Efficiency of PFMHT20

- PFMHT Missing transverse energy trigger (PF particle flow; MHT online measurement of missing E_T)
- \odot Goal save events with missing $E_T > 20$ GeV
- Suggests presence of neutrinos good for our analysis

Trigger Efficiency of PFMHT20

- From ElectronHad dataset
- Offline Selection Single electron Pt > 30
 GeV
- Mu Turn-on value
- Sigma Trigger resolution width

Path: HLT_Ele25_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_CentralJet30_CentralJet25_PFMHT20

HLT_PFMHT20 Efficiency Analysis

- Broad turn-on curve (large trigger resolution width)
- Plateau reached around 55 GeV
- This is a problem we make offline cuts at 30 GeV – need to account for this offline

Future Work

- Uncertainty measurement of PFMHT20 efficiency
- Efficiency measurement (with uncertainty) for central jets of Pt 30 and 25
- These measurements will also affect the performance of the trigger analyzed here

Rome/13 hour train ride

Questions?