

Lepton Flavor Violation at LHCb The $\tau \rightarrow \mu\mu\mu$ decay

Matt Jaffe Physics Department, Penn State University

The LHCb Experiment

700 scientists from
52 institutions

- Indirect search for new physics
 - CP Violation
 - Measurement of rare decays
- Lepton Flavor Violating Decays

Outline

- The $\tau \rightarrow \mu \mu \mu$ Decay
 - Why study it?
 - How to study it?
- Data Analysis

Results

(more likely)

SM + Heavy Majorana v_r

• SUSY SO(10)

•mSUGRA + seesaw

OR

- Standard Model forbidden process
- Test and constrain New Physics models

Methods: How $\tau \rightarrow \mu \mu \mu$?

Example of a variable distribution which might be cut on.

 Select signal, reject background

Draft sets of cuts

- Study cut effects on signal and background distributions

Control Channels

- $D_s \rightarrow \pi \pi \pi$
- D_s → φ(μμ) π
- Distributions as similar as possible to signal
- Want cuts with similar effects across all three channels

$$BR (\tau \to \mu \mu \mu) = \frac{N(\tau \to \mu \mu \mu)}{N(D_s \to \pi \pi \pi)} *$$

Example of a variable distribution demonstrating good agreement between signal and control channels.

 $\frac{BR(D_s \to \pi \pi \pi)}{BR(D_s \to \tau X)} * f_{prod}(\tau \, from \, D_s) * \frac{\varepsilon(D_s \to \pi \pi \pi)}{\varepsilon(\tau \to \mu \mu \mu)}$

Step 1: Stripping

Signal Monte Carlo Efficiency

Selection	ε _r (τ -> μμμ)	ε _r (Ds -> πππ)	ε _r (Ds ->φπ)	
Proposed	0.683	0.501	0.563	
Previous	0.623	0.116	0.234	

Background Elimination – Remaining Events

Selection	ε _r (τ -> μμμ)	ε _r (Ds -> πππ)	ε _r (Ds ->φπ)
Proposed	0.04%	0.21% (Prescale)	0.044%

Step 2: Selection

Efficiency = (# candidates after stripping + selection) / (# candidates after stripping)

7.7.2011

Matt Jaffe	
Penn State University	

Control Channel Mass Peaks

- D_s peak split into the 2 channels
- Signal MCs on top
- Extracted peaks below

- Re-optimize $D_s \rightarrow \pi \pi \pi$ stripping to eliminate need for pre-scaling
- Further study of daughter PID cuts to split the three channels
- Analyze selection of $\tau \rightarrow \mu \mu \mu$. We imagine starting with an earlier, looser version of the D_s cuts, then optimizing to the channel.
- Perform rigorous statistical analysis of cut effects at all stages
- Look at a lot of data!

Thank You!

I cannot thank the following people enough:

- CERN Summer Student Program
 - <u>Dr. Johannes Albrecht Supervisor</u>
 - Dr. Marco Gersabeck Substitute Supervisor
- The University of Michigan REU program
 - Dr. Homer Neal
 - Dr. Jean Krisch
 - Dr. Junjie Zhu
 - Dr. Steve Goldfarb
 - Lauren Rigani

Thank you!

What a

summer

7		2	n	1	1
/	• /	. 2	U	Т	Τ.

BACKUP SLIDES

_	_		-		
7			\cap	1	1
	./	. –	U		. Ц.

Matt Jaffe Penn State University

Previous Cuts

Mother Cuts

- Mass Window = ± 400 MeV
- Vchi2 < **25**
- c * τ > **70** μm
- Child with P_t > 1 GeV

Proposed Cuts

Mother Cuts

- Mass Window = ± 400 MeV
- → Vchi2 < 20</p>
- →• c * τ > **100** μm
 - τ IPS < **15**

Daughter Cuts (for all 3)

- P_t > 300 MeV
- mu track χ^2 / DoF < 5
- (Mu IPS)² > 6

Daughter Cuts (for all 3)

- P_t > 300 MeV
- mu track χ^2 / DoF < 5
- → (Mu IPS)² > 9

Previous Cuts

Mother Cuts

- Mass Window = ± 250 MeV \longrightarrow Mass Window = ± 80 MeV
- Vchi2 < 25
- c * τ > 200 μm
- D_c IPS < 3
- **P**₊ > **2 GeV**

Daughter Cuts (for all 3)

- P₊ > 300 MeV
- mu track χ^2 / DoF < 5
- (Mu IPS)² > 12

Proposed Cuts

Mother Cuts

- - Vchi2 < 20
 - c * τ > 200 μm
 - D_c IPS < **15**
 - Ds-> 3π required to be TIS

Daughter Cuts (for all 3)

- P₊ > 300 MeV
- mu track χ^2 / DoF < 5
- (Mu IPS)² > 9

Current Working Version of Selection Cuts

- 1) Mother Impact Parameter Significance (= $\sqrt{\chi^2}$) < 1.8
- 2) Mother Vertex $\chi^2 < 6$
- 3) max (Delta Log Likelihood(Pion Kaon)) < 0
- 4) max (Daughter Track χ^2) < 1.4
- 5) Cos (angle) > 0.999875
- 6) max (Daughter P_{tot}) < 40 GeV
- 7) max (Delta Log Likelihood(Pion Proton)) < 5

Selection #	ε _r (Tau -> 3 Mu)	ε _r (Ds -> 3 Pi)	ε _r (Ds -> Phi Pi)
2_6	0.683	0.6825	0.762
2_7	0.517	0.554	0.532
2_8	0.257	0.306	0.347

 $\epsilon_r := (\# \text{ candidates after new stripping lines}) / (\# \text{ candidates after truth matching})$

7 7 2011	Matt Jaffe	10
/./.2011	Penn State University	19

Selection #	Ds -> 3 Pi	Ds -> Phi Pi	Signal Blinded Data
(a)	0.299	0.347	0.00301
(b)	0.301	0.282	0.00197
(c)	0.1790	0.1595	0.000385
(d)	0.127	0.114	0.000185
(e)	0.177	0.190	0.000462

Efficiency = (# candidates after stripping + selection) / (# candidates after stripping)

More Detailed Efficiency

		ε for this cut only			(N-1) ε for this cut	
Cut	Ds -> 3 Pi	Ds -> Phi Pi	Background	Ds -> 3 Pi	Ds -> Phi Pi	Background
(e) 1	0.565	0.564	0.0936	0.732	0.735	0.106
2	0.750	0.757	0.351	0.857	0.900	0.454
3	0.730	0.664	0.118	0.952	0.935	0.541
4	0.952	0.970	0.895	0.923	0.973	0.893
5	0.639	0.660	0.190	0.659	0.758	0.250
6	0.841	0.874	0.648	0.984	1.000	.995
7	0.714	0.664	0.485	0.800	0.800	0.465
8						

Mass Peak Fit Parameters

	(a)	(b)	(c)	(d)	(e)		S / B - fits integrated on (1900,2050)		
Ds -> 3 Pi									
(1)	-166.39	201.1	129.2	91.0	100.53	(a):	0.380	#	Parameter
(2)	0.244	-0.021	-0.042	-0.04	-0.033	(b):	0.374	(1)	Linear fit constant
(3)	809.1	440.03	223.0	70.2	183.6	(c):	0.680	(2)	Linear fit
(4)	1965.6	1965.7	1965.5	1965.5	1965.6	(d):	0.734		slope
(5)	8.860	8.12	8.443	7.51	8.28	(e):	0.719	(3)	Gaussian amplitude
Ds -> Phi Pi								(4)	Gaussian
(1)	127.7	188.2	110.5	30.84	106.9	(a):	0.340		Center
(2)	-0.03	-0.076	-0.05	-0.014	-0.05	(b):	0.375	(5)	Gaussian Sigma
(3)	110.5	73.82	38.7	16.58	34.5	(c):	0.591		
(4)	1977.7	1976.9	1976.4	1975.4	1976.4	(d):	0.664		
(5)	12.62	11.57	10.734	7.65	10.07	(e):	0.791		

Backup Slides - Kinematics Plots

Backup Slides - More Plots

Matt Jaffe Penn State University

Backup Slides - Flight/IPS Plots

7.7.2011

Matt Jaffe Penn State University

