
JuliaHEP 2024 Workshop
Monday 30 September 2024 - Friday 4 October 2024

CERN

Book of Abstracts

Contents

Using Julia to perform Physics on time critical systems 1

Enabling Julia code to run at scale with artefact caching 1

Simulation for the Tau Air-Shower Mountain-Based Observatory 2

Demonstrator for HEP event-processing framework in Julia 2

Generating Feynman Diagrams for QED in Julia . 2

IntegrationTests.jl: a framework for the automatic generation of integration tests for Julia
projects and eco systems . 3

Hadron Physics with Julia . 3

Machine Learning in Julia for Calorimeter Showers . 4

EDM4hep.jl: Analysing EDM4hep files with Julia . 4

Power of Python and Julia for Advanced Data Analysis 4

Fast Jet Reconstruction in Julia . 5

Unveiling the Jet Substructure using Julia . 5

Bayesian and general statistics in Julia . 6

Julia in the lab . 6

Julia in Trigger Level Analysis of Z’ to bb . 6

The JuLeAna Software: How to run an entire experiment in Julia 7

RNTuple writing in Julia . 7

FHist.jl – status of v0.11 . 8

Training Implicit Generative Models via an Invariant Statistical Loss 8

Open-Source Simulation of Semiconductor Detectors . 8

Porting the CMS pixel reconstruction to Julia: preliminary results 9

Empowering Underrepresented Communities Through Julia 9

A Julia interface to the ROOT framework . 10

iii

RootIO.jl: a Julia I/O library for the ROOT framework . 10

Welcome . 10

Julia in high-energy physics: a paradigm shift or just another tool? 11

Discussion . 11

3D Neutrino Event Display RainbowAlga.jl . 11

Workshop Social Diner . 11

Julia for physics (and physicists) . 11

Hands-on Julia . 12

Hands-on Julia II . 12

Introduction to GPU programming . 12

Final Discussion . 12

Closeout . 12

Hackathon . 12

Julia as a Statically-Compiled Language . 12

Q&A Juila for physics . 13

Q&A GPU programming . 13

JuliaHEP 2024 Workshop / Book of Abstracts

Talks / 1

Using Julia to perform Physics on time critical systems
Author: Evangelos Paradas1

1 ASML

Corresponding Author: evangelos.paradas@proton.me

In High Energy Physics, very demanding algorithms are written to represent the physics that takes
place either in the accelerators or in the detectors and to analyze the measured signals. The cost
of each algorithm can be broken down into two categories: the development and the execution.
Starting from the latter, the target platforms set stringent runtime constraints, where the algorithm
must behave in a very predicable way, with no anomalous behaviour under expected conditions,
including rare occurrences. Because of these needs, HEP has favoured writing code in C++ and,
after validation, deploying this directly to target systems.
This choice has a profound impact, adding yet another complexity layer to the development phase.
Physicists (and mathematicians), often with limited software background, must learn a complex
programming language with significant hurdles, such as raw pointers and memory alignment, “copy
by value” vs. “copy by reference” and many other topics that require significant study.
This is exactly the point that High Level programming languages are trying to solve, by bringing
expressiveness, modularity, speed and reproducibility to the code development process. At this
point, development and execution seem to be pretty far away, for the use-cases that we are interested
in. What if Julia could make it possible to develop in an easy way and execute in a deterministic
way?
In this talk we will go through the aspects of programming using Julia, the ease of handling the
Garbage Collector and the ability to interoperate with C/C++, resulting in smooth deployment and
significantly reduced maintenance.

Talks / 2

Enabling Julia code to run at scale with artefact caching
Author: Elvis Alexander Aguero Vera1

Co-authors: Pere Mato Vila 2; Stewart Graeme

1 Brown University
2 CERN

Corresponding Authors: elvis_vera@brown.edu, graeme.stewart@cern.ch, pere.mato@cern.ch

The Julia programming language has evolved into a mature tool for scientific computing over the
past decade, offering high-level capabilities with just-in-time (JIT) compilation and efficient garbage
collection. Its performance, comparable to that of C/C++, makes Julia an attractive option for the
high-energy physics community. However, Julia’s use of precompiled files to achieve this perfor-
mance introduces significant startup delays on the first program execution (”time to first plot”),
which would be a severe drawback in distributed systems where each node would have to compile
dependencies locally. This project proposes a workflow to obtain a ready-to-use directory with all
necessary precompiled files for selected applications, while also leveraging the shared CernVM-FS
(CVMFS) file system to share files across nodes in a distributed setup. We developed and tested a
framework for automating the publication of precompiled Julia files to CVMFS and evaluated its
impact on performance using two sample applications: the Julia Jet Reconstruction package and the
Geant4 wrapper package. Our findings demonstrate that caching precompiled files that are stored
in CVMFS significantly reduces startup times, with reductions of up to 97% for the Geant4 pack-
age. Furthermore, we examined the effects of cross-compilation for various microarchitectures and
found that nodes benefit from shared cache files without notable performance degradation due to
microarchitecture differences.

Page 1

JuliaHEP 2024 Workshop / Book of Abstracts

Talks / 3

Simulation for the Tau Air-ShowerMountain-Based Observatory

Authors: Jeffrey Lazar1; Pavel ZhelninNone

1 University of Wisconsin-Madison

Corresponding Authors: jlazar@icecube.wisc.edu, pzhelnin@g.harvard.edu

While IceCube’s detection astrophysical neutrinos at energies up to a few PeV has opened a new
window to our Universe, much remains to be discovered regarding these neutrinos’origin and na-
ture. In particular, the difficulty differentiating and charged-current (CC) events in the energy
limits our ability to measure this flux’s flavor ratio precisely. The Tau Air-Shower Mountain-Based
Observatory (TAMBO) is a next-generation neutrino observatory capable of producing a high-purity
sample of CC events in the energy range from 1-100 PeV, i.e. just above the IceCube measure-
ments. An array of water Cherenkov tanks and plastic scintillators deployed on one face of the Colca
Canyon will observe the air shower produced when a lepton, produced in a CC interaction,
emerges from the opposite face and decays in the air. In this contribution, I will present the current
status of the TAMBO simulation, including preliminary sensitivities to various flux models.

Talks / 4

Demonstrator for HEP event-processing framework in Julia
Authors: Benedikt Hegner1; Josh Ott2; Mateusz Jakub Fila1; Oleksandr Shchur3

1 CERN
2 North Carolina State University
3 Ukrainian Catholic University (UA)

CorrespondingAuthors: mateusz.jakub.fila@cern.ch, joshua.kennith.ott@cern.ch, benedikt.hegner@cern.ch, olek-
sandr.shchur@cern.ch

Event processing frameworks are important software components of High Energy Physics (HEP) ex-
periments, playing a critical role in building applications for HEP-specific workflows such as trigger
or event reconstruction. A key aspect of these frameworks is their ability to efficiently orchestrate
the parallel processing of algorithms for multiple events simultaneously. As heterogeneous setups,
including GPUs and other accelerators, become increasingly accessible, there is a growing need to
incorporate these resources into the frameworks effectively.

Our demonstrator project investigates the viability of developing an event-processing framework
that utilizes heterogeneous resources in the Julia language. For the first demonstrator, we chose
Dagger.jl as a library supporting parallel and heterogeneous computing. We will present the gen-
eral assumptions and requirements for a framework, address the current state of the demonstrator
project and its methodology, as well as discuss our experience with Julia’s ecosystem and Dagger.jl,
highlighting the strengths and challenges we encountered.

Talks / 5

Generating Feynman Diagrams for QED in Julia
Author: Anton ReinhardNone

Co-authors: Simeon Ehrig ; Uwe Hernandez Acosta 1

Page 2

JuliaHEP 2024 Workshop / Book of Abstracts

1 Helmholtz-Zentrum Dresden-Rossendorf

Corresponding Authors: u.hernandez@hzdr.de, a.reinhard@hzdr.de, s.ehrig@hzdr.de

Calculating differential cross-sections of scattering processes is a crucial observable in high-energy
physics, used to predict experimental outcomes and test theoretical models. For perturbative quan-
tum field theories, this involves generating all possible Feynman diagrams for a given scattering
process and translating them into computable functions. This becomes cumbersome very rapidly,
especially for high-multiplicity processes. In this talk, we introduce a method implemented in Julia
for generating these functions for arbitrary scattering processes in perturbative QED, utilizing the
GraphComputing.jl library. Our approach incorporates novel results and reuse optimizations, which
could be extended to other theories or even the entire Standard Model and beyond.

Talks / 6

IntegrationTests.jl: a framework for the automatic generation of
integration tests for Julia projects and eco systems
Author: Simeon Ehrig1

Co-authors: Anton Reinhard ; Uwe Hernandez Acosta 2

1 CASUS -center for advanced understanding
2 Helmholtz-Zentrum Dresden-Rossendorf

Corresponding Authors: s.ehrig@hzdr.de, u.hernandez@hzdr.de, a.reinhard@hzdr.de

To be successor, every larger software project needs to be tested to verify the correct functionality
and to enable its functionality to be extended flawlessly. The type of tests can be very different and
depends on the kind of software project. Software projects, that are divided into several sub-projects
require integration tests to verify that the individual parts work together correctly.
At JuliaHEP 2023, I gave the talk “Unit and Integration testing in modularized julia package eco-
systems”and talked about the problems that need to be solved when developing integration tests for
a Julia package ecosystem. With the feedback from the talk, I developed IntegrationTests.jl [1], a
framework to dynamically generate GitHub Action or GitLab CI integration jobs for a given Julia
Project.toml. The talk explains the different problems to solve when adding integration tests in a
Julia project and how IntegrationTests.jl solves them.

[1] https://github.com/QEDjl-project/IntegrationTests.jl

Talks / 7

Hadron Physics with Julia
Author: Mikhail Mikhasenko1

1 Ruhr Univeristy Bochum

Corresponding Author: mikhail.mikhasenko@cern.ch

This talk will explore two areas. First, case studies will demonstrate how Julia has been effectively
used for complex analyses in resonance physics and computationally demanding partial-wave anal-
ysis across several projects. Second, I will introduce a recent initiative aimed at standardizing
hadronic-decay model serialization. In this context, the HadronicLineshapes.jl and ThreeBodyDe-
cays.jl packages facilitate accurate and reproducible amplitude modeling, supporting broader adop-
tion within the hadron physics community and advancing the research frontier.

Page 3

JuliaHEP 2024 Workshop / Book of Abstracts

Talks / 8

Machine Learning in Julia for Calorimeter Showers

Author: Daniel Assuncao RegadoNone

Co-authors: Graeme A Stewart 1; Pere Mato Vila 1; Piyush Raikwar 1

1 CERN

CorrespondingAuthors: piyush.raikwar@cern.ch, pere.mato@cern.ch, danielregado@gmail.com, graeme.andrew.stewart@cern.ch

The calorimeter in Large Hadron Collider (LHC) experiments measures particle energy by tracking
showers from collisions. Describing these processes requires precise simulation methods, such as
the Geant4 toolkit. Recently, generative models have emerged as a faster alternative based on dif-
ferent Machine Learning (ML) architectures, such as Diffusion and Variational Autoencoders.
The training of ML models is predominantly carried out using Python frameworks, primarily Py-
Torch and TensorFlow. In order to determine how mature ML development is using Julia, a denois-
ing diffusion model, CaloDiffusion, was chosen to be implemented and trained with Flux.jl. On
top of technical details, this talk also covers benchmarks of both implementations and analysis of
performance using GPU profiling.

Talks / 9

EDM4hep.jl: Analysing EDM4hep files with Julia
Author: Pere Mato Vila1

1 CERN

Corresponding Author: pere.mato@cern.ch

EDM4hep aims to establish a standard event data model for the store and exchange of event data in
HEP experiments. The Julia package EDM4hep.jl is capable of generating Julia-friendly structures
for the EDM4hep data model and reading event data files in ROOT format (either TTree or RNTuple)
that are written by C++ programs, utilising the UnROOT.jl package. This contribution explores the
motivations behind the primary design choices of this package, such as the exclusive use of structure
of arrays (SoA) to access the stored collections, which then empower users to develop ergonomic
data analyses using Julia’s high-level concepts and functionality, while maintaining performance
comparable to C++ programs. Several examples are given to illustrate how efficient data analysis
can be achieved using high-level objects, eliminating the need to resort to flat n-tuples.

Talks / 10

Power of Python and Julia for Advanced Data Analysis
Author: Ianna Osborne1

1 Princeton University

Corresponding Author: ianna.osborne@cern.ch

Python and Julia are two powerful languages that are transforming data analysis in high-energy
physics (HEP).

Page 4

JuliaHEP 2024 Workshop / Book of Abstracts

We’ll start by exploring why Python remains a go-to language for data analysis, and then pivot
to Julia, which is gaining recognition for its impressive speed and suitability for scientific applica-
tions.

I’ll show you how to create a dynamic workflow that combines the strengths of both languages. We’
ll explore PythonCall for integrating Python’s vast ecosystem into Julia projects and JuliaCall for
embedding high-performance Julia code into Python scripts. You’ll see how easy it is to blend these
languages and why it’s worth the effort.

Through hands-on examples, I’ll demonstrate real-world applications where combining Python and
Julia leads to faster, more efficient data processing. We’ll tackle scenarios common in HEP, showing
the practical benefits of this hybrid approach.

We’ll also discuss the challenges you might face, like dependency management and ensuring com-
patibility between the two languages. I’ll share strategies to overcome these hurdles and keep your
projects running smoothly.

Looking ahead, we’ll consider the exciting future possibilities of deeper Python-Julia integration and
the role of the developer community in driving innovation. I hope to encourage you to experiment
with this approach and contribute to the evolving ecosystem.

Talks / 11

Fast Jet Reconstruction in Julia
Author: Graeme A Stewart1

1 CERN

Corresponding Author: graeme.andrew.stewart@cern.ch

Jet reconstruction remains a critical task in the analysis of data from HEP colliders. We describe
in this paper a new, highly performant, Julia package for jet reconstruction, JetReconstruction.jl,
which integrates into the growing ecosystem of Julia packages for HEP. With this package users
can run sequential reconstruction algoritms for jets, In particular, for LHC events, the Anti-, Cam-
bridge/Aachen and Inclusive algorithms can be used. For FCCee studies the use of alternative algo-
rithms such as the generalised ee- and Durham are also supported.

The full reconstruction history is made available, allowing inclusive and exclusive jets to be retrieved.
The package also provides the means to visualise the reconstruction.

The implementation of the package in Julia is discussed, with an emphasis on the features of the
language that allow for an easy to work with, ergonomic, code implementation, that achieves high-
performance. Julia’s ecosystem offers the possibility to vectorise code, using single-instruction-
multiple-data processing, in way that is transparent for the developer and more flexible than op-
timization done via C and C++ compilers. Thanks to this feature, the performance of JetReconstuc-
tion.jl is better than the current Fastjet C++ implementation in jet clustering for p-p events produced
at the LHC.

Talks / 13

Unveiling the Jet Substructure using Julia
Authors: Sanmay Ganguly1; Sattwamo Ghosh2

1 IIT Kanpur
2 IISER Kolkata

Page 5

https://github.com/JuliaHEP/JetReconstruction.jl

JuliaHEP 2024 Workshop / Book of Abstracts

Corresponding Authors: sg21ms204@iiserkol.ac.in, sanmay.ganguly@cern.ch

High energetic quarks and gluons, produced in a scattering phenomena, undergoes fragmentation
and hadronization, leading to a spray of collimated particles, which are collectively clustered to
form jets. In the ultra-high momentum regime, it may often happen that multiple energetic partons
are within a geometric vicinity, and the jet thus formed has multiple sub-jets within it. This led to
the formulation and study of the jet-substructure paradigm, which has evolved as a sub-branch of
QCD studies. Thus, jet substructure has emerged as a powerful framework for studying the Standard
Model at particle colliders. The FastJet C++ package provides several modules for jet and jet substruc-
ture analysis. This work presents the translation of a few of the functionalities of FastJet, including
some of the taggers, groomers, jet filtering, and trimming algorithms, into Julia, highlighting the so-
lutions and challenges we encountered. Additionally, the performance of the Julia implementation
is measured with respect to the original FastJet code, and even though a significant improvement is
not observed, it holds the potential for further optimizations that could lead to better performance
in the future.

Talks / 14

Bayesian and general statistics in Julia
Author: Oliver Schulz1

1 Max Planck Society (DE)

Corresponding Author: oliver.schulz@cern.ch

This tutorial will introduce statistical tooling in Julia, with a special focus on the Bayesian Analysis
Toolkit BAT.jl. We’ll show how to deal with probability distributions, build models and likelihood
functions, and run parameter inference.

Talks / 15

Julia in the lab
Author: Oliver Schulz1

1 Max Planck Society (DE)

Corresponding Author: oliver.schulz@cern.ch

From controlling vacuum, high voltage and motors, running data acquisition, performing data anal-
ysis, to publication, all in Julia.

Talks / 16

Julia in Trigger Level Analysis of Z’ to bb
Author: Michael Steven Farrington1

1 Harvard University (US)

Corresponding Author: michael.steven.farrington@cern.ch

Page 6

JuliaHEP 2024 Workshop / Book of Abstracts

During Run 3 of the LHC, trigger level analysis (TLA) offers the possibility of targetting new signals
which other analyses are less sensitive to. I will showcase how Julia has been used as a part of the
analysis workflow for a TLA search of a new heavy vector boson, Z’, decaying to two bottom quarks.
I will discuss the advantages and experience of using Julia in this analysis.

Talks / 17

The JuLeAna Software: How to run an entire experiment in Ju-
lia
Authors: Florian Henkes1; Oliver Schulz2

1 Tecnical University of Munich
2 Max Planck Society (DE)

Corresponding Authors: oliver.schulz@cern.ch, florian.henkes@tum.de

The Large Enriched Germanium Experiment for Neutrinoless ββ Decay (LEGEND) experimental
program is dedicated to the search for the neutrinoless double-beta (0νββ) decay of 76Ge with iso-
topically enriched high-purity germanium (HPGe) detectors and a discovery sensitivity beyond a
half-life of 1028 years. The project’s first phase, LEGEND-200, has stably accumulated physics data
at the Laboratori Nazionali del Gran Sasso (LNGS) for over a year with 142 kg of HPGe detectors
and plans to install more in the coming months. The experiment uses two software stacks with two
independent analysis teams. This talk will highlight the status and development of the JuLeAna
(Julia LEGEND Analysis) software stack and its application to current LEGEND data. It will focus
on the performance and data handling for the Digital Signal Processing (DSP), the calibration and
fitting routines, event level building, metadata, and IO handling. Furthermore, a quick showcase will
highlight the dataflow adaption within a custom SLURM-based parallel processing environment.
This work is supported by the U.S. DOE and the NSF, the LANL, ORNL and LBNL LDRD programs;
the European ERC and Horizon programs; the German DFG, BMBF, and MPG; the Italian INFN;
the Polish NCN and MNiSW; the Czech MEYS; the Slovak RDA; the Swiss SNF; the UK STFC; the
Russian RFBR; the Canadian NSERC and CFI; the LNGS and SURF facilities.

Talks / 18

RNTuple writing in Julia
Authors: Jerry  Ling1; Tamas Gal2

1 Harvard University (US)
2 ECAP, FAU Erlangen-Nürnberg

Corresponding Authors: jerry.ling@cern.ch, tamas.gal@fau.de

We briefly share insights gained from implementing RNTuple Reader twice: first in Python, and
then in Julia. We discuss the composability of the RNTuple type system and demonstrate how Julia’s
multiple dispatch feature has been effectively employed to realize this concisely.

Regarding the implementation of RNTuple Writer, we outline the current capabilities and illustrate
how they support end-user analyses. Furthermore, we present a roadmap for future development
aimed at achieving seamless data I/O interoperability across various programming languages and
libraries, including C++, Python, and Julia.

Lastly, we showcase the capabilities and performance of our Julia implementation with real exam-
ples. We highlight how our solution facilitates interactive analysis for end-users utilizing RNTu-
ple.

Page 7

JuliaHEP 2024 Workshop / Book of Abstracts

Talks / 19

FHist.jl – status of v0.11
Author: Jerry  Ling1

1 Harvard University (US)

Corresponding Author: jerry.ling@cern.ch

We share a status update on the histogramming package FHist.jl, which started out as a course final
project but grew to be production-grade and is used in real ATLAS analysis.

We briefly go over the feature and performance of FHist.jl, including the core features as seen in
ROOT’s TH* classes, as well as axillary features such as integration with Plots.jl and Makie.jl.

Finally, we briefly discuss possible future directions of the project and potential nice-to-have en-
hancements (named axis, write to disk, GPU) and integrations (statistical fitting, distribution/pdf).

Talks / 20

Training Implicit Generative Models via an Invariant Statistical
Loss
Author: Jose de Frutos1

1 Universidad Carlos III

Corresponding Author: josemanuel.defrutos22@gmail.com

Implicit generative models have the capability to learn arbitrary complex data distributions. On the
downside, training requires telling apart real data from artificially-generated ones using adversarial
discriminators, leading to unstable training and mode-dropping issues. As reported by Zahee et al.
(2017), even in the one-dimensional (1D) case, training a generative adversarial network (GAN) is
challenging and often suboptimal. In this work, we develop a discriminator-free approach to training
1-dimensional (1D) generative implicit models. Our loss function is a discrepancymeasure between a
suitably chosen transformation of themodel samples and a uniform distribution; hence, it is invariant
with respect to the true distribution of the data. We first formulate our method for 1D random
variables, providing an effective solution for approximate reparameterization of arbitrary complex
distributions. Then, we consider a temporal setting (both univariate and multivariate), in which we
model the conditional distribution of each sample given the history of the process. We demonstrate
through numerical simulations that this new method yields promising results, successfully learning
true distributions in a variety of scenarios and mitigating some of the well-known problems that
state-of-the-art implicit methods present.

Talks / 21

Open-Source Simulation of Semiconductor Detectors
Author: Felix Hagemann1

Co-author: Oliver Schulz 2

1 Max Planck Institut für Physik
2 Max Planck Society (DE)

Page 8

JuliaHEP 2024 Workshop / Book of Abstracts

Corresponding Authors: oliver.schulz@cern.ch, hagemann@mpp.mpg.de

SolidStateDetectors.jl is a novel open-source software solution used to simulate the behavior of solid
state detectors, e.g. germanium and silicon detectors. The package calculates the electric fields and
weighting potentials, as well as the charge drift in the detectors and detector output signals.
Users can define arbitrary detector geometries via simple configuration files using constructive solid
geometry (CSG). Detectors may also be segmented/pixelized and have more than two electrical con-
tacts. The environment of the detector can be included in the geometry and the field calculation to
simulate the effect of nearby objects on the field in detectors with large passivated surfaces.
SolidStateDetectors.jl features fully multi-threaded high-performance 3D field calculation in both
cylindrical and Cartesian coordinates. Recent feature additions include simulation of the charge-
cloud self-interactions, automatic detector capacitance calculation, GPU-support for accelerated
field calculations, and an extension to the Julia wrapper Geant4.jl, which allows for the simulation
of realistic event distributions.

Talks / 22

Porting the CMS pixel reconstruction to Julia: preliminary re-
sults
Authors: Andrea Bocci1; Maya Ali2; Mohamad Ayman Charaf2; Mohamad Khaled Charaf2; Philippe Gras3; Ruba
El Houssami2

1 CERN
2 American University of Beirut (LB)
3 Université Paris-Saclay (FR)

CorrespondingAuthors: andrea.bocci@cern.ch, philippe.gras@cern.ch, maa351@mail.aub.edu, ruba.el.houssami@cern.ch,
mohamad.khaled.charaf@cern.ch, mohamad.ayman.charaf@cern.ch

The Patatrack pixel track reconstruction is a stand-alone project that has been extracted from the
CMS reconstruction software. Over the years it has been used to test and evaluate different CPU
and GPU technologies, like OpenMP, TBB, CUDA, HIP, SYCL, Kokkos, and Alpaka.

In order to evaluate the Julia programming language in the context of a realistic High Energy Physics
software project, the Patatrack pixel track reconstruction is now being rewritten in Julia.

The project is under active development, and about 30% of the reconstruction algorithms have been
documented, rewritten in Julia, and validated. The first results are very encouraging: the Julia ver-
sion produces correct results, and has a single-threaded performance very close to that of the original
C++ version.

This contribution will give an overview of the project and its long-term prospects, describe the chal-
lenges encountered during the work, along with the solutions chosen to address them, and present
the preliminary results in terms of correctness and performance of the Julia implementation.

Talks / 23

EmpoweringUnderrepresentedCommunitiesThrough Julia
Author: Shahzaib Abbas1

Co-author: Syed Ali Asghar 1

1 University of Karachi

Page 9

JuliaHEP 2024 Workshop / Book of Abstracts

Corresponding Authors: syedaliazgher2001@gmail.com, shahzaib2you@gmail.com

This presentation will explore the socio-economic impact of Julia. In light of the significant social
inequalities in large cities like Karachi, mastering Julia opens up new opportunities for underrep-
resented communities. We will showcase how integrating Julia with CMS Open data sparks high
school students’ interest in STEM, and how we continue to nurture this enthusiasm through under-
graduate projects as they advance in their academic careers.

Talks / 24

A Julia interface to the ROOT framework
Author: Philippe Gras1

1 Université Paris-Saclay (FR)

Corresponding Author: philippe.gras@cern.ch

A new implementation of the ROOT framework Julia interface, ROOT.jl, has been performed. Previ-
ous implementation could not run with recent Julia releases due to the stop of support of the Cxx.jl
library it was based on to interface with the ROOT C++ libraries. The new implementation is based
on CxxWrap.jl and WrapIt!. CxxWrap.jl is a package to interface C++ libraries with Julia, while
WrapIt! is an application to generate the C++ code needed by CxxWrap.jl. Many ROOT classes are
supported, including classes for histogramming, plotting, the complete Geom libraries, I/O classes
including TTrees. More classes will be added in the future. It provides ROOT file read and write sup-
port. The features of the packages and the challenge of its implementation will be presented.

Talks / 25

RootIO.jl: a Julia I/O library for the ROOT framework
Author: Yash Solanki1

Co-authors: Pere Mato Vila 2; Philippe Gras 3

1 Indian Institute of Technology, Delhi
2 CERN
3 Université Paris-Saclay (FR)

Corresponding Authors: pere.mato@cern.ch, philippe.gras@cern.ch, 252yash@gmail.com

RootIO.jl is a package that provides a high-level abstraction for I/O to the ROOT files. It provides a
streamlined interface for creating, writing, and filling ROOTTTrees. With this new package, the user
can easily write all primitive types, arrays, vectors and dataframes to a TTree in a row-wise manner,
without worrying about references and pointers to the objects. The package implementation uses
ROOT.jl. The presentation will focus on implementation details, usage and I/O examples. Plans for
extending the current features will also be presented.

Talks / 26

Welcome
Corresponding Authors: graeme.andrew.stewart@cern.ch, pere.mato@cern.ch

Page 10

JuliaHEP 2024 Workshop / Book of Abstracts

Computing Seminar / 27

Julia in high-energy physics: a paradigm shift or just another
tool?
Corresponding Author: u.hernandez@hzdr.de

The Julia programming languagewas designed for scientific computing andwith its claimed usability
(„walks like Python“) and speed („runs like C“), it seems to be a scientists‘software dream come true.
Julia appears to be particularly well-suited for high-energy physics (HEP), where reliable software
tools and rapid development cycles are crucial for everyday work. Whether it’s data processing,
or the simulation of the whole experiment, or the final data analysis and interactive visualization,
the Julia ecosystem—with over ten thousand packages—might be a modern and high-performance
software solution and the right set of tools to easily build any missing pieces.
In this talk, we will discuss, if the Julia programming language meets these requirements and can
withstands testing on the workbenches of HEP. Additionally, we give an overview of current contri-
butions in Julia to the HEP-related software stack and its potential trajectory. Moreover, we explore
how the software development process itself can benefit from Julia, as it strikes an ideal balance
between high-performance technology and student-friendly training —an especially valuable com-
bination for the rapidly moving high-energy physics community.

Computing Seminar / 28

Discussion

Talks / 29

3D Neutrino Event Display RainbowAlga.jl
Author: Tamas Gal1

1 ECAP, FAU Erlangen-Nürnberg

Corresponding Author: tamas.gal@fau.de

RainbowAlga.jl is a 3D neutrino event display based on GLMakie. The package was already intro-
duced and demonstrated in 2013 in its early development phase at the very first JuliaHEP. This talk
shows the current status of the package which has evolved to a helpful utility that is customisable
and offers both interactive and programmatic ways to display neutrino events in Cherenkov neutrino
detectors KM3NeT, IceCube, Baikal BDUNT/GVDl, P-One or Trident.

30

Workshop Social Diner

Hackathon / 31

Julia for physics (and physicists)

Page 11

JuliaHEP 2024 Workshop / Book of Abstracts

Hackathon / 32

Hands-on Julia
Corresponding Author: u.hernandez@hzdr.de

This session will provide a step-by-step guide on building a Julia package, implementing physics
models, and applying best practices for the everyday workflow of a physicist.

Hackathon / 33

Hands-on Julia II
Corresponding Author: u.hernandez@hzdr.de

This session will build on the morning’s hands-on Julia work, introducing more advanced topics
based on earlier progress.

Hackathon / 34

Introduction to GPU programming
Corresponding Author: tim@juliahub.com

Hackathon / 35

Final Discussion
Corresponding Author: philippe.gras@cern.ch

Hackathon / 36

Closeout

Hackathon / 37

Hackathon

Computing Seminar / 38

Julia as a Statically-Compiled Language

Page 12

JuliaHEP 2024 Workshop / Book of Abstracts

Corresponding Author: jeff.bezanson@gmail.com

Though first intended as an interactive, productivity language, Julia has seen a surprising amount of
interest as an alternative to C and C++. In this talk I will discuss why that is, and what we are doing
to encourage and enable those use cases. Providing more compile-time safety and making it easier
to deploy Julia programs are major areas of focus for the project and JuliaHub currently.

Hackathon / 39

Q&A Juila for physics

Hackathon / 40

Q&A GPU programming

Page 13

	Using Julia to perform Physics on time critical systems
	Enabling Julia code to run at scale with artefact caching
	Simulation for the Tau Air-Shower Mountain-Based Observatory
	Demonstrator for HEP event-processing framework in Julia
	Generating Feynman Diagrams for QED in Julia
	IntegrationTests.jl: a framework for the automatic generation of integration tests for Julia projects and eco systems
	Hadron Physics with Julia
	Machine Learning in Julia for Calorimeter Showers
	EDM4hep.jl: Analysing EDM4hep files with Julia
	Power of Python and Julia for Advanced Data Analysis
	Fast Jet Reconstruction in Julia
	Unveiling the Jet Substructure using Julia
	Bayesian and general statistics in Julia
	Julia in the lab
	Julia in Trigger Level Analysis of Z' to bb
	The JuLeAna Software: How to run an entire experiment in Julia
	RNTuple writing in Julia
	FHist.jl – status of v0.11
	Training Implicit Generative Models via an Invariant Statistical Loss
	Open-Source Simulation of Semiconductor Detectors
	Porting the CMS pixel reconstruction to Julia: preliminary results
	Empowering Underrepresented Communities Through Julia
	A Julia interface to the ROOT framework
	RootIO.jl: a Julia I/O library for the ROOT framework
	Welcome
	Julia in high-energy physics: a paradigm shift or just another tool?
	Discussion
	3D Neutrino Event Display RainbowAlga.jl
	Workshop Social Diner
	Julia for physics (and physicists)
	Hands-on Julia
	Hands-on Julia II
	Introduction to GPU programming
	Final Discussion
	Closeout
	Hackathon
	Julia as a Statically-Compiled Language
	Q&A Juila for physics
	Q&A GPU programming

