
JuliaHEP 2024, Sep. 30, 2024

A Julia interface to the ROOT framework

Philippe Gras
IRFU, CEA, Université Paris-Saclay, France

Sep. 30, 2024



Introduction

• Need for integration of the ROOT framework and more generally legacy C++ libraries had been
identified in Potential of the Julia Programming Language for High Energy Physics Computing � ,
Jonas Eschle et al. (2023).

• WrapIt! � was developed to automate generation of Julia-binding for C++ libraries.
• Was presented at Erlangen’s JuliaHEP workshop � .
• CxxWrap � used for the C++-Julia interface.

• ROOT.jl has been rewritten from scratch using WrapIt!.

2 / 14

https://doi.org/10.1007/s41781-023-00104-x
https://github.com/grasph/wrapit
https://indico.cern.ch/event/1292759/contributions/5618593/
https://github.com/JuliaInterop/CxxWrap.jl


Reminder of WrapIt! goals

• Transparent for the Julia user:
say_hello("World") to call void say_hello(const char*)
a = A() to instantiate class A

@ccall "./libHello.so".say_hello("World"::Cstring)::Cvoid
@cxx cxx_say_hello(pointer("World"))

• Support for large libraries with 1000+ classes and methods.
• Minimal effort to add the bindings to an existing C++ library and update them when the library code evolves.

⇒ Automatic discovery of the types and methods to bind.
⇒ Requiring a compilation step is not a problem.

3 / 14



ROOT.jl history

Clang.jl
generated
C-wrapper

Cxx.jl
dynamic binding

WrapIt ! & 
CxxWrap

2014 2016 2024

2020
 

Cxx.jl not
working with

new Julia
releases

2022
 

start of wrapit
development

2016
 

First CxxWrap 
release

 ---

First Cxx.jl
release 2021

 

HSF Julia-HEP
miniwokshop

 --

Stanitzki & 
Strube’s publication1

2023
 

Potential of 
Julia for 

HEP 
publication2

R
O

O
T.

jl

Original developer: Joseep Pata; Oliver Schulz joined in 2017; Philippe Gras main developer of the CxxWrap version, with several

contributions from Pere Mato. Few other developers contributed along the ROOT.jl history.

1 doi:10.1007/s41781-021-00053-3 �
2 doi:10.1007/s41781-023-00104-x �

4 / 14

https://doi.org/10.1007/s41781-021-00053-3
https://doi.org/10.1007/s41781-023-00104-x


The release 0.3.0 revolution

• Second ROOT.jl revolution: first was the migration to Cxx.jl and dynamic binding (ala cppyy).
• No more limited to Julia 1.3.x !
• Static binding

→ Limited to ROOT classes included in the build.
→ But can be relatively easily extended to more classes.

• C++ ROOT libraries are installed automatically.
• Can also use an already existing installation, with constraints on the ROOT version.

• Package in the General Julia registry
→ Easy installation: julia> ]add ROOT

5 / 14



Currently supported classes

Release v0.3.2
TSystem, TROOT, TInterpreter, → System classes
TH1x, TH2x, TProfile, TGraph, TAxis,TCanvas, TPad, → Histogram, graph and plotting
TF1, TF1Parameters, TFormula, TFitResults, → Functions and fitting
TRandom, → Random number generation
TFile, TDirectoryFile, TTree, TBranch, → ROOT I/O including TTrees
TTreeReader, TTreeReaderValue, TTreeReaderArray, → Reading TTrees
TObject, TClass, TNamed, TVectorD, TVectorF, TSeqCollection, TList → Base and collection classes

Release v0.3.3-moreclasses

add https://github.com/JuliaHEP/ROOT.jl#v0.3.3-moreclasses

All classes from v0.3.2
The full Histogram package apart from TMutiGraph class
The full Geometry package

6 / 14



Supporting more ROOT classes

Adding new classes is relatively easy
• For the easiest cases: adding the name of the class header file in the configuration file of the code

generator will be enough.
• For less-easy cases, some method or types, causing issue but unneeded, will need to be added in the

veto configuration file.
• For worst cases, extra development of WrapIt! needed.

Templates
• Most difficult cases are templated class, which have limited support in WrapIt! (linked to libclang

limitations)

Hackatron!
Working group to prioritize the classes to add, and possibly start adding them.

7 / 14



Demo

Click here for the demo �

Altenative link (view from web) �

8 / 14

https://www.cern.ch/pgras/juliahep2024-root-jl-demo.html


ROOT I/O

Providing TFile write support using native ROOT libraries had been identified as a priority at the
last JuliaHEP workshop.

• Reading/Writing histograms and any ROOT class other than TTree and RNtuple is straightfoward.
• Reading TTree is easy thanks to TTreeReader.
• Writing TTree is difficult because of ”SetAddress” mechanism of ROOT.

The RootIO.jl package built on top of ROOT.jl will provide a higher-level interface.
See next talk from Yash Solanki.

9 / 14



Handling of ROOT dependencies

Current system
• Since release 0.3.0 ROOT library and its dependencies downloaded from conda-forge if the expected

ROOT release not found in the user environment.
• Compilation of the C++ part of the wrapper done at the ROOT.jl package installation time.

Pros of the current system
• Does not duplicate ROOT installation, if expected release is already installed in the user environment.
• Automatic installation of dependencies if it is not available.

Cons of the current system
• A non-standard way of managing binary dependencies of a Julia package.
• Large volume of software (4.9 GB) downloaded by Conda, which won’t be shared with other Julia

packages.
• Long package installation, due to Conda package installation and the compilation of the C++ part of

the wrapper. ⇒ Limited number of ROOT classes in the default release.
10 / 14



Handling of ROOT dependencies

Use of the Julia BinaryProvider, aka _jll packages
• First discussions on a ROOT_jll dates from Jan. 2019 �

• Several challenges
3 Both Julia and ROOT use LLVM, but of different releases. Solved.
7 Need to cross-compile root on Alpine (light container-oriented Linux distribution using musl as c library

instead of the more common glicc). Lot of progress performed but not solved yet.
7 ROOT library must be “dlopen’ed”: causes recently discovered and not-yet-understood issues.
7 Handling of compiler/libc/stdc++ version dependency.

• Will solve the package installation long time issue, by allowing to precompile the wrapper.

Hackatron
A good challenge for the Hackatron!

11 / 14

https://github.com/JuliaHEP/ROOT.jl/issues/17


Documentation: examples

Several usage example shipped with the package
https://github.com/JuliaHEP/ROOT.jl/tree/master/examples �

• Histogramming, plotting, writting histogram to disk
• Fitting Histograms and Graphs
• Reading and writing TTrees

12 / 14

https://github.com/JuliaHEP/ROOT.jl/tree/master/examples


Documentation: API reference

Nowadays
Users need to consult the ROOT reference manual.

Future
Help (docstring) pages generated from the ROOT doxygen-based reference manual.

Hackatron!
Development of a doxygen → Julia help page convertor in Julia is an easy project.
Will be useful for several other projects.
Starting code already available.

13 / 14



Conclusions

• A new Julia interface to ROOT.
• Includes already many ROOT classes.
• Provides TFile writing. See next talk for a higher-level interface for TTree writing.
• Next development priority: speeding up package installation by distributing compiled c++ library as a

_jll package.
• Several topics identified for the Hackatron: class prioritisation, cross-compiling challenge,

doxygen-to-julia-docstring converter.

14 / 14


