RootlO.JL
A 1/0 package for ROOT.JL

Yash Solanki' Philippe Gras? Pere Mato Vila®

"Indian Institute of Technology, Delhi
2CEA/IRFU, Université Paris-Saclay
*CERN, EP-SFT

Table of contents

1. Introduction
2. RootlO.JL

3. Examples

4. Conclusion and future development

Introduction

ROOT TTree support in Julia
UnROOT.jl: excellent to read TTrees, but does not support writing.

UpROOT.jl (wrapper to Uproot Python package): read/write support,
but performance limited by Python.

ROOT.JL: Julia interface to the C++ ROOT data analysis framework. It
provides the C++ APl with one-to-one mapping. The C++ interface
does not map well in Julia for TTree read and write.

Need for an easy interface to write TTrees in Julia

Writing TTree with ROOT.jl

Write support has a complex syntax:

using ROOT

f = ROOT.TFile!Open(”testl.root”, "RECREATE")

tree = ROOT.TTree("tree”, "tree”)

age = Ref(0) # <- A REF

Branch(tree, "name”, Ptr{Cvoid}(), "s/C") # <- POINTER

Branch(tree, "age”, age)

for (name, agel[]) in [("john", 18), ("Emma”, 3), ("Eleanor”, 21)]
SetBranchAddress(tree, "name”, convert(Ptr{Cchar}, pointer(name)))
GC. @preserve name age Fill(tree) # UNDERLYING USE OF PTR REQUIRES @preserve

0 end

Scan(tree) # Display the tree content
Write(tree)

3 Close(f)

Listing 1: Writing to a root file using ROOT.JL

It requires manipulation of references and pointers, which is not in
line with the design practices of Julia programs.

RootlO.JL

RootlO.JL: Write interface for ROOT.JL

TN

3 tree = TTree(f, "tree”, "tree”, name = ["john", "Emma”,

RootlO.jl provides a user-friendly high-level interface for TTree write
support. Built as a layer on top of ROOT,jL.

The previous example simplifies to:

using ROOT, RootlO
f = ROOT.TFile!Open(”testl.root”, "RECREATE")

Eleanor”],
age = [18, 3, 21])

5 Scan(tree) # Display the tree content
6 Write(tree)
Close(f)

Listing 2: Writing to a root file using RootlO.JL

RootlO includes support for most of the standard Julia primitive
types, character strings (String), and vectors of elements of these
types.

https://github.com/JuliaHEP/RootIO.jl

Supported data types

The following table summarizes the supported types:

Type Description

String A character string

Int8 An 8-bit signed integer

Uint8 An 8-bit unsigned integer

Int16 A 16-bit signed integer

Ulnt16 A 16-bit unsigned integer

Int32 A 32-bit signed integer

uint32 A 32-bit unsigned integer

Float32 A 32-bit floating-point number

Float64 A 64-bit floating-point number

Int64 A long signed integer, stored as 64-bit

Ulnt64 A long unsigned integer, stored as 64-bit

Bool A boolean

StdVector{T}* | A vector of elements of any of the above types stored as std:vector
Vector{T} A vector of elements of any of the above types stored as a C-array?

Table 1: Supported data types and descriptions

Examples

Storing scalars

To initialize a TTree with branches, call the RootlOTTree method and
input the branch name along with the datatype stores by the branch.

2 using RootlO, ROOT

using Random

Create a ROOT file
file = ROOT.TFile!Open(”example.root”, "RECREATE")

8 # Create the tree

tree = RootlO.TTree(file, "tree”, "My Tree”, pt = Float64, eta = Float64, phi = Float64)

Fill the tree with random values

for i in 1:10

Fill(tree, (pt = 100%randexp(), eta = Sxrandn(), phi = mxrand()))
end

Display tree content

17 Scan(tree)

9 # Save the tree and close the file
) RootlO.Write(tree)

ROOT. Close(file)

Listing 3: Storing scalars to root file using RootlO.JL

Storing object as structs

We can store rows that have a composite type (a structure):

using RootlO, ROOT
2 using Random
3 mutable struct Event
nparts::Int32
pt::StdVector{Float6s4}
6 eta:: StdVector{Float64}
phi::StdVector{Float64}
8 end
Event() = Event(0., StdVector{Float6s4}(), StdVector{Float64}(), StdVector{Float64}())
) f = ROOT.TFile!Open("example.root”, "RECREATE")
11 tree = RootlO.TTree(f, "tree”, "My Tree”, Event)
12 e = Event()
13 for i in 1:10
14 e.nparts = rand(Vector{Int32}(1:10))
5 e.pt = StdVector(100xrandexp(e.nparts))

16 e.eta = StdVector(5«randn(e.nparts))
7 e.phi = StdVector(m«rand(e.nparts))
8 RootlO. Fill(tree, e)

19 end

20 RootlO.Write(tree)

21 Close(f)

Listing 4: Storing structs to root file using RootlO.JL

Storing Tables and DataFrames

using RootlO, ROOT
using Random
using DataFrames

Create the dataframe. Broadcasting is used to vectorize the event/row generation
nevents = 10
nparts = rand(1:10, nevents)

0 # We can use any container table type compliant with the ‘Tables.jl ' interface
1 table = DataFrame(nparts = nparts,
12 pt = StdVector.(100 .x randexp.(nparts)),

eta = StdVector.(5 .x randn.(nparts)),
1 phi = StdVector.(m .% randn.(nparts)))

16 # Create the ROOT file
f = ROOT.TFile!Open("example.root”, "RECREATE")

19 # Create the tree and fill it with the dataframe contents
tree = RootlO.TTree(f, "tree”, "My Tree”, table)

22 # Display tree contents
23 Scan(tree)

25 # Save the tree and close the file

26 RootlO.Write(tree)
27 Close(f)

Listing 5: Storing a DataFrame to root file using Rootl0.JL

Conclusion and future
development

Conclusion and future development

A new package, RootlO.JL, that provides an easy-to-use TTree write
support.

- General repository registration submitted. In the meantime, use
add https://github.com/JuliaHEP/RootIO. jl.

Future development roadmap

- Support for nested structs and sub-branches, which will allow
writing of arbitrary compositions of objects;
- Read support for completeness;

- Support for RNTuple.

Thank you!

	Introduction
	RootIO.JL
	Examples
	Conclusion and future development

