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Project Context

• Evaluation of Julia as a language for High Energy Physics:
• General evaluations    

• Jet clustering evaluations 

• Patatrack pixel reconstruction: 
• Standalone application extracted from CMS software.

• Pixel reconstruction: the process of identifying and reconstructing particle trajectories by 
analyzing data from pixel detectors.

• Tested over the years on multiple CPU and GPU technologies (OpenMP, CUDA, HIP, 
SYCL, Kokkos, etc.).
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https://doi.org/10.1007/s41781-023-00104-x
https://github.com/JuliaHEP/JetReconstruction.jl


Main Goal

To evaluate the feasibility of using Julia for large-scale HEP applications by:

1. Re-writing pixel track reconstruction algorithms, and comparing it with 
existing C++ application.

2. Test Julia’s ability to handle multithreading, GPU acceleration, and overall 
flexibility in a realistic HEP environment.
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Intermediate Steps

1. Port the Patatrack application to Julia. 

2. Ensure its structure and output are similar to the C++ applications.

3. Monitor and optimize performance of the Julia implementation.
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Overview of the Patatrack 
Application: Modules
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Overview of the Patatrack 
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Overview of the Patatrack 
Application: Framework
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Overview of the Patatrack
Application: Framework
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Porting C++ to Julia
1. Understand the execution of the Patatrack reconstruction software

2. C++ : #ifndef include(“macro”) module reconstruction

3. Zero Index, One Index

4. Type casting

5. Pointers No pointer

6. ES data reading

7. Reinterpret for 32 bit words

8. Performance tips
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Module Inclusion and Management in 
Julia
No Preprocessor: Julia doesn’t use #include or #ifdef

directives like C++

File Inclusion: The include("file.jl") function reads and 

executes files at runtime. Including the same file multiple times 

can cause errors.

Managing Modules in Patatrack:

Single Point of Inclusion: Each module is included 

once in the Patatrack package to prevent multiple inclusions.

Controlled Access: Other parts of the program access these 

modules through Patatrack, ensuring no duplicate file inclusions.
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Zero Indexing to One Indexing
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All detector metadata (e.g., 
module indices) are zero-
indexed in C++, but Julia uses 
1-based indexing, requiring 
careful adjustment by 
incrementing indices by one 
during the transition.
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Module Error Toy Example
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Module Error Toy Example
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Avoiding Pointers
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Reinterpret Function
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C++20 std::bit_cast : https://en.cppreference.com/w/cpp/numeric/bit_cast

https://en.cppreference.com/w/cpp/numeric/bit_cast


Performance
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Initial Results
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1000 Events / 95.2 Seconds = 10.5 Events / Second 
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Initial Results - Cont'd
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1000 Events / 95.2 Seconds = 10.5 Events / Second only on Clusterizer

Too Many Heap Allocations

Heap allocations reducing time performance !!
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Julia Documentation
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“Unexpected memory allocation is almost always a sign of some problem with your code, usually a 
problem with type-stability or creating many small temporary arrays. Consequently, in addition to the 
allocation itself, it's very likely that the code generated for your function is far from optimal. Take such 
indications seriously and follow the advice below.”
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Vector to SVector
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Views For Slices
In Julia, an array "slice" expression like array[1:5, :] creates a copy of 
that data (except on the left-hand side of an assignment, where 
array[1:5, :] = ... assigns in-place to that portion of array).
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Abstract Type Within Struct
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Type Instability: Type of member Variable not known at compile time, Compiler Allocates Extra memory 

on Heap. Dynamic Dispatch due to runtime type check slows down performance

Porting the CMS pixel reconstruction to Julia: preliminary results

before

after



After Other Optimizations…
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Run Time Drops to 19.7 seconds (9 seconds on Ayman’s Macbook M1 Processor)

Run Time C++ 14.6 seconds (6 seconds on Ayman’s Macbook M1 Processor)
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The Process
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Achievements
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Patatrack 16th Hackathon Results
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Patatrack 16th Hackathon Results- Cont'd
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Clusterizer Validation

Cluster Ids of digis Validated 
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RecHits Validation
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Doublets Validation
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Running Time: Up to Doublets

41

C++:

Julia:
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35.1 Seconds
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Ported 100% of the local reconstruction
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Ongoing Activities:

• Precompilation and Distribution
▪ PackageCompiler.jl

• Multithreading
▪ Threads.@threads

▪ FLoops.jl

▪ ThreadPools.jl

• GPU Integration
▪ CUDA.jl
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Next Steps and Future Work 

• Integrate GPU acceleration into the entire application.

• Optimize Performance.

• Share findings to encourage more adoption of Julia in scientific computing!
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Conclusion

• Advantages gained from using Julia
o Syntax that is easier to read and write 

o Automatic memory management 

o Large Ecosystem

• Key Accomplishments
o Significant strides in initial implementations and testing.

• Remaining Challenges
o Address multithreading, pre-compilation, and GPU integration.

• Future Vision
o Enhance both development speed and runtime performance.
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Thank You!
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Contact Info:

maya.ali@cern.ch

mohamad.ayman.charaf@cern.ch

mohamad.khaled.charaf@cern.ch
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