
Porting the CMS pixel
reconstruction to Julia:
preliminary results
Maya Ali

Mohamad Ayman Charaf

Mohamad Khaled Charaf

Ruba El Houssami

Dr. Andrea Bocci

Dr. Phillipe Gras

October 1st , 2024

The Team

Porting the CMS pixel reconstruction to Julia: preliminary results 2

Outline

I. Project Context

II. Main Goal

III. Intermediate Steps

IV. Overview of the Patatrack Application

V. Challenges Encountered: Julia VS. C++

VI. The Process

VII. Achievements

VIII.Ongoing Activities

IX. Next Steps and Future Work

X. Conclusion

3Porting the CMS pixel reconstruction to Julia: preliminary results

Project Context

• Evaluation of Julia as a language for High Energy Physics:
• General evaluations

• Jet clustering evaluations

• Patatrack pixel reconstruction:
• Standalone application extracted from CMS software.

• Pixel reconstruction: the process of identifying and reconstructing particle trajectories by
analyzing data from pixel detectors.

• Tested over the years on multiple CPU and GPU technologies (OpenMP, CUDA, HIP,
SYCL, Kokkos, etc.).

4Porting the CMS pixel reconstruction to Julia: preliminary results

https://doi.org/10.1007/s41781-023-00104-x
https://github.com/JuliaHEP/JetReconstruction.jl

Main Goal

To evaluate the feasibility of using Julia for large-scale HEP applications by:

1. Re-writing pixel track reconstruction algorithms, and comparing it with
existing C++ application.

2. Test Julia’s ability to handle multithreading, GPU acceleration, and overall
flexibility in a realistic HEP environment.

5Porting the CMS pixel reconstruction to Julia: preliminary results

Intermediate Steps

1. Port the Patatrack application to Julia.

2. Ensure its structure and output are similar to the C++ applications.

3. Monitor and optimize performance of the Julia implementation.

6Porting the CMS pixel reconstruction to Julia: preliminary results

7

Overview of the Patatrack
Application: Modules

A B
C

D

E

F

G

BeamSpot
Clusterizer

RecHits

Tracks

Vertices

CountValidator

HistoValidator

Porting the CMS pixel reconstruction to Julia: preliminary results

8

Overview of the Patatrack
Application: Modules

A B
C

D

E

F

G

BeamSpot
Clusterizer

RecHits

Tracks

Vertices

CountValidator

HistoValidator

Porting the CMS pixel reconstruction to Julia: preliminary results

Unpacker and

Clusterizer

9

Overview of the Patatrack
Application: Modules

A B
C

D

E

F

G

BeamSpot
Clusterizer

RecHits

Tracks

Vertices

CountValidator

HistoValidator

Porting the CMS pixel reconstruction to Julia: preliminary results

Metadata of

BeamSpot

10

Overview of the Patatrack
Application: Modules

A B
C

D

E

F

G

BeamSpot
Clusterizer

RecHits

Tracks

Vertices

CountValidator

HistoValidator

Porting the CMS pixel reconstruction to Julia: preliminary results

Mapping of

Coordinates

11

Overview of the Patatrack
Application: Modules

A B
C

D

E

F

G

BeamSpot
Clusterizer

RecHits

Tracks

Vertices

CountValidator

HistoValidator

Porting the CMS pixel reconstruction to Julia: preliminary results

Tuplets

Formation

12

Overview of the Patatrack
Application: Modules

A B
C

D

E

F

G

BeamSpot
Clusterizer

RecHits

Tracks

Vertices

CountValidator

HistoValidator

Porting the CMS pixel reconstruction to Julia: preliminary results

Vertex

Reconstruction

Overview of the Patatrack
Application: Framework

13

Product

registry

ED Tokens

Event and

Event Setup

Task

Scheduling

Plugin

factory

Multithreading

Porting the CMS pixel reconstruction to Julia: preliminary results

Overview of the Patatrack
Application: Framework

14

Product

registry

ED Tokens

Event and

Event Setup

Task

Scheduling

Plugin

factory

Multithreading

Porting the CMS pixel reconstruction to Julia: preliminary results

Event and

Event Setup

Placeholder of
Data and
Metadata

Overview of the Patatrack
Application: Framework

15

Product

registry

ED Tokens

Event and

Event Setup

Task

Scheduling

Plugin

factory

Multithreading

Porting the CMS pixel reconstruction to Julia: preliminary results

Product

registry

Interface between
Modules and the
Event

Overview of the Patatrack
Application: Framework

16

Product

registry

ED Tokens

Event and

Event Setup

Task

Scheduling

Plugin

factory

Multithreading

Porting the CMS pixel reconstruction to Julia: preliminary results

ED Tokens

Used to access
Data from the
Event

Overview of the Patatrack
Application: Framework

17

Product

registry

ED Tokens

Event and

Event Setup

Task

Scheduling

Plugin

factory

Multithreading

Porting the CMS pixel reconstruction to Julia: preliminary results

Plugin

factory

Interface to
instantiate
Modules

Overview of the Patatrack
Application: Framework

18

Product

registry

ED Tokens

Event and

Event Setup

Task

Scheduling

Plugin

factory

Multithreading

Porting the CMS pixel reconstruction to Julia: preliminary results

Task

Scheduling

Multithreading

Currently exploring
this in Julia

Porting C++ to Julia
1. Understand the execution of the Patatrack reconstruction software

2. C++ : #ifndef include(“macro”) module reconstruction

3. Zero Index, One Index

4. Type casting

5. Pointers No pointer

6. ES data reading

7. Reinterpret for 32 bit words

8. Performance tips

19Porting the CMS pixel reconstruction to Julia: preliminary results

Module Inclusion and Management in
Julia
No Preprocessor: Julia doesn’t use #include or #ifdef

directives like C++

File Inclusion: The include("file.jl") function reads and

executes files at runtime. Including the same file multiple times

can cause errors.

Managing Modules in Patatrack:

Single Point of Inclusion: Each module is included

once in the Patatrack package to prevent multiple inclusions.

Controlled Access: Other parts of the program access these

modules through Patatrack, ensuring no duplicate file inclusions.

20Porting the CMS pixel reconstruction to Julia: preliminary results

Zero Indexing to One Indexing

21

All detector metadata (e.g.,
module indices) are zero-
indexed in C++, but Julia uses
1-based indexing, requiring
careful adjustment by
incrementing indices by one
during the transition.

Porting the CMS pixel reconstruction to Julia: preliminary results

Module Error Toy Example

22Porting the CMS pixel reconstruction to Julia: preliminary results

Module Error Toy Example

23Porting the CMS pixel reconstruction to Julia: preliminary results

Avoiding Pointers

24Porting the CMS pixel reconstruction to Julia: preliminary results

Reinterpret Function

25Porting the CMS pixel reconstruction to Julia: preliminary results

C++20 std::bit_cast : https://en.cppreference.com/w/cpp/numeric/bit_cast

https://en.cppreference.com/w/cpp/numeric/bit_cast

Performance

26Porting the CMS pixel reconstruction to Julia: preliminary results

Initial Results

27

1000 Events / 95.2 Seconds = 10.5 Events / Second

Porting the CMS pixel reconstruction to Julia: preliminary results

Initial Results - Cont'd

28

1000 Events / 95.2 Seconds = 10.5 Events / Second only on Clusterizer

Too Many Heap Allocations

Heap allocations reducing time performance !!

Porting the CMS pixel reconstruction to Julia: preliminary results

Julia Documentation

29

“Unexpected memory allocation is almost always a sign of some problem with your code, usually a
problem with type-stability or creating many small temporary arrays. Consequently, in addition to the
allocation itself, it's very likely that the code generated for your function is far from optimal. Take such
indications seriously and follow the advice below.”

Porting the CMS pixel reconstruction to Julia: preliminary results

Vector to SVector

30Porting the CMS pixel reconstruction to Julia: preliminary results

Before After

Views For Slices
In Julia, an array "slice" expression like array[1:5, :] creates a copy of
that data (except on the left-hand side of an assignment, where
array[1:5, :] = ... assigns in-place to that portion of array).

31Porting the CMS pixel reconstruction to Julia: preliminary results

Before

Before

After

After

Abstract Type Within Struct

32

Type Instability: Type of member Variable not known at compile time, Compiler Allocates Extra memory

on Heap. Dynamic Dispatch due to runtime type check slows down performance

Porting the CMS pixel reconstruction to Julia: preliminary results

before

after

After Other Optimizations…

33

Run Time Drops to 19.7 seconds (9 seconds on Ayman’s Macbook M1 Processor)

Run Time C++ 14.6 seconds (6 seconds on Ayman’s Macbook M1 Processor)

Porting the CMS pixel reconstruction to Julia: preliminary results

The Process

34

02

01 03

04

Analyze Dependencies

Configure Metadata

Port Module Files

Validate Output

Porting the CMS pixel reconstruction to Julia: preliminary results

Achievements

35Porting the CMS pixel reconstruction to Julia: preliminary results

Patatrack 16th Hackathon Results

Porting the CMS pixel reconstruction to Julia: preliminary results 36

Patatrack 16th Hackathon Results- Cont'd

Porting the CMS pixel reconstruction to Julia: preliminary results 37

Clusterizer Validation

Cluster Ids of digis Validated

Porting the CMS pixel reconstruction to Julia: preliminary results 38

RecHits Validation

Porting the CMS pixel reconstruction to Julia: preliminary results 39

Doublets Validation

Porting the CMS pixel reconstruction to Julia: preliminary results 40

Running Time: Up to Doublets

41

C++:

Julia:

Porting the CMS pixel reconstruction to Julia: preliminary results

31.8 Seconds

35.1 Seconds

42

Ported 100% of the local reconstruction

A B
C

D

E

F

G

BeamSpot
Clusterizer

RecHits

Tracks

Vertices

CountValidator

HistoValidator

Porting the CMS pixel reconstruction to Julia: preliminary results

Ongoing Activities:

• Precompilation and Distribution
▪ PackageCompiler.jl

• Multithreading
▪ Threads.@threads

▪ FLoops.jl

▪ ThreadPools.jl

• GPU Integration
▪ CUDA.jl

43Porting the CMS pixel reconstruction to Julia: preliminary results

Next Steps and Future Work

• Integrate GPU acceleration into the entire application.

• Optimize Performance.

• Share findings to encourage more adoption of Julia in scientific computing!

44Porting the CMS pixel reconstruction to Julia: preliminary results

Conclusion

• Advantages gained from using Julia
o Syntax that is easier to read and write

o Automatic memory management

o Large Ecosystem

• Key Accomplishments
o Significant strides in initial implementations and testing.

• Remaining Challenges
o Address multithreading, pre-compilation, and GPU integration.

• Future Vision
o Enhance both development speed and runtime performance.

45Porting the CMS pixel reconstruction to Julia: preliminary results

Thank You!

46

Contact Info:

maya.ali@cern.ch

mohamad.ayman.charaf@cern.ch

mohamad.khaled.charaf@cern.ch

Porting the CMS pixel reconstruction to Julia: preliminary results

mailto:maya.ali@cern.ch
mailto:mohamad.ayman.charaf@cern.ch
mailto:mohamad.khaled.charaf@cern.ch

