¢

1S

FHist.jl (v0.11) - Histogram for HEP

JuliaHEP 2024 @CERN

Jerry Ling (Harvard University)

“Why did you make a histogram package?”

% You may not believe it, but histogram is hard.
< How hard? Apparently it costs $10k - $15k just to support log-scale 2D

histogram!

0 ot lotlv.i © ‘™ jackparmer added the (¥ NEEDS SPONSOR) |
plotly / plotly.js

ode (+) Issues 557 19 Pull requests 36 (») Actions () Securit ~ Insigh . - ,
o q = : y e 9 jackparmer:,u":‘:r-wmw:? on Sep 10, 2020

This issue has been tagged with NEEDS SPON$OR

Log axes aren't supported in histogram2d

A for this feature would certainly be w4
(®Open) chriddyp o ‘ ‘ ‘ 17 - 1 mment complete without the Plotly maintainers leading the ef

Sponsorship range: $10k-$15k

Outline

Joke aside, histogram package should “just work” and you shouldn’t have to

worry about it!

% Design, features, and performance of FHist.jl
% Visualization support

% Potential nice-to-have upgrades

il

Main API change for v0.11 & #95

$o Merged | Moelf merged 22

Design - “just work” type signature

3 Conversation 36

In the final push for v0.11, Pere convinced me to remove the type parametrization
over binedges’ from histograms, so users can easily put histograms into their

data types.

Earlier we released on type such as ‘UnitRange’ to dispatch O(1) bin location

lookup.

Main API change for v0.11 & #95

FoMerged™ Moelf merged 22 comn

Design - “just work” type signature

3 Conversation 36

Solution: make a dual-use ‘BinEdges’ type:

. BinEdges

Base.@constprop :aggressive function Base.searchsortedlast(r::BinEdges, X::Real)
isuniform: :Bool f isuniform(r)

: ‘ re1 e "eturn floor - r.rfi <l
nonunlformfedges vector {Float64} \ loor (Int, (X L EG1RSE) r.inv_step) 1

uniform_edges: :StepRangelLen{Float64, Base

searchsortedlast(r.nonuniform_edges, Xx)
inv_step::Floaté6

rfirst::Float64

It always records two possible binedges, the “isuniform’ jump sometimes are

constant-propagated away!

Design - “just work” constructors

Two equally common usage:

- Make a histogram with data already in array

Hist1D(rand(1000); binedges = 1:1

Rule: Data is passed in via positional argument

Design - “just work” constructors

Two equally common usage:

- Make a histogram with known “binedges” or even “bincounts”

HistlD(; binedges

HistlD(; binedges 1:10. bincounts = collect(1:9

Rule: Other attributes are passed in via keyword argument

Features

Unsurprisingly, we try to reference features from ROOT’s TH* class:

integral
- project
- restrict
- lookup
- normalize

- efc.

https://moelf.github.io/FHist.jl/stable/api/

Performance

“... you have these random people in Julia that, for some reason, care a lot about

histogram performance...”

—Dr. Chris Rackauckas @ JuliaHEP 2023

Performance (#87)

@benchmark HistlD(x; binedges = range(-1,2;length=31 setup=x=rand
VN/E} tr)l r]()t t() t)Ea E;l()\A/EEr tf\Eif] BenchmarkTools.Trial: 236 camples with 1 evaluation.
Range - | - GC (min .. max

Time GC (median
-

C/C++ implementations, we try! [- - 6C (mean * o
J I e = 8 s . 00 a0

9.31 ms <

Memory estimate: 912 bytes, allocs estimate

histogramld
X = np.random.random(1)
Il %timeit _ = np.histogram(x, bins=np.linspace(-1,2,31))
1 869 ps per loop (mean * std. dev. of 7 runs, 1 loop each)

%%ktimeit
h = Hist.new.Reg(30, -1, 2).Int64()
h.f111(x)

J14.5 ms' * 48.7 ps per loop (mean * std. dev. of 7 runs, 100 loops each)

%timeit _ = histogramld(x, =[-1, 2], bins=30) 10
[@9.73 ms! £ 276 ps per loop (mean * std. dev. of 7 runs, 100 loops each)

https://github.com/Moelf/FHist.jl/pull/87

Visualizations - Plots.j| and Makie.jl integration

Many examples for both Plots.|l (special thanks to Prof. Gomez Cadenas) and

Makie.jl. Pkg extension mechanism (since Julia v1.9) made life a lot easier.

100 4 M ploth) || 440 — stairs(h1)
600
50 50
Entries = 10000
0 0 Mean x = -0.0094 400
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2 Mean y = -0.0018
Std Dev x = 1.0
- 125 Std Devy =1.0
1004 . hist(h1) I I — errorbars(h1) Sertows=Tlss
100 A 200
75 I I
50 i
50 I
o 25 1 I

https://moelf.github.io/FHist.jl/dev/notebooks/plots_plotting/
https://moelf.github.io/FHist.jl/dev/notebooks/makie_plotting/
https://julialang.org/blog/2023/04/julia-1.9-highlights/#package_extensions

And we can do 2D log plot:

CairoMakie, FHist

edges = [0.001,

h = Hist2D((xrand(10000), 0)); binedges = (edges, edges
heatmap(h; axis=(xscale= loglO yscale logl0

107"

102

1073 +
1078

What upgrades do you want? ##

% Categorical (“string”) axis — useful for cutflows

% Alternative value/weight filling — useful for tracking systematics variations

% Serialization format - recently learned CMS W-mass measurement involved a
30 GB C++ Boost-histogram, somehow, you want to save that to disk!

% Integration with statistical frameworks (HS3.jl?)

% GPU-backend?

Let me know what’s the most pressing need!
13

