
Enabling Julia code to run at scale with
artefact caching
JuliaHEP Workshop, 2024
Elvis Aguero1

Supervisors: Graeme A Stewart2 and Pere Mato Vila 2

1School of Engineering, Brown University
2CERN

September 30, 2024 Enabling Julia code to run at scale with artefact caching 1

Challenges in computational High-Energy
Physics

• Research in High-Energy Physics (HEP) is
computationally intensive.

• Each LHC experiment at CERN has around 6M+
lines of code

• The WLCG has 1.4M cores distributed across 170
sites.

• Current paradigm: Performance-critical code is written in
C++, with significant use of Python.

• Leading to the need to interface these two, rather
different, languages.

September 30, 2024 Enabling Julia code to run at scale with artefact caching 2

Challenges in computational High-Energy
Physics

• Research in High-Energy Physics (HEP) is
computationally intensive.

• Each LHC experiment at CERN has around 6M+
lines of code

• The WLCG has 1.4M cores distributed across 170
sites.

• Current paradigm: Performance-critical code is written in
C++, with significant use of Python.

• Leading to the need to interface these two, rather
different, languages.

September 30, 2024 Enabling Julia code to run at scale with artefact caching 2

Julia for HEP

• Julia is a high-level, general-purpose language, with
dynamically typed characteristics and a REPL.

→ Ease of use, promoting high productivity workflows.

• JIT compilation at runtime via LLVM.

→ Julia benchmarks similar to C/C++, particularly in
scientific computing packages

→ Julia has drawn considerable attention in the HEP
community1,2.

1https://hepsoftwarefoundation.org/workinggroups/juliahep.html
2https://arxiv.org/pdf/2306.03675

September 30, 2024 Enabling Julia code to run at scale with artefact caching 3

https://hepsoftwarefoundation.org/workinggroups/juliahep.html
https://arxiv.org/pdf/2306.03675

Julia for HEP

• Julia is a high-level, general-purpose language, with
dynamically typed characteristics and a REPL.

→ Ease of use, promoting high productivity workflows.
• JIT compilation at runtime via LLVM.

→ Julia benchmarks similar to C/C++, particularly in
scientific computing packages

→ Julia has drawn considerable attention in the HEP
community1,2.

1https://hepsoftwarefoundation.org/workinggroups/juliahep.html
2https://arxiv.org/pdf/2306.03675

September 30, 2024 Enabling Julia code to run at scale with artefact caching 3

https://hepsoftwarefoundation.org/workinggroups/juliahep.html
https://arxiv.org/pdf/2306.03675

Julia for HEP

• Julia is a high-level, general-purpose language, with
dynamically typed characteristics and a REPL.

→ Ease of use, promoting high productivity workflows.
• JIT compilation at runtime via LLVM.

→ Julia benchmarks similar to C/C++, particularly in
scientific computing packages

→ Julia has drawn considerable attention in the HEP
community1,2.

1https://hepsoftwarefoundation.org/workinggroups/juliahep.html
2https://arxiv.org/pdf/2306.03675

September 30, 2024 Enabling Julia code to run at scale with artefact caching 3

https://hepsoftwarefoundation.org/workinggroups/juliahep.html
https://arxiv.org/pdf/2306.03675

Distributed computing with Julia

Julia precompiles packages and user files generating local files
that are optimized for its current CPU microarchitecture.

→ Files generated at one node are not directly available to
the other nodes.

→ When available, generated precompiled files might not be
compatible.

→ Waste of resources when running at scale on the grid

Our goal:

• Leverage Julia’s potential to run in distributed contexts

September 30, 2024 Enabling Julia code to run at scale with artefact caching 4

Distributed computing with Julia

Julia precompiles packages and user files generating local files
that are optimized for its current CPU microarchitecture.

→ Files generated at one node are not directly available to
the other nodes.

→ When available, generated precompiled files might not be
compatible.

→ Waste of resources when running at scale on the grid

Our goal:

• Leverage Julia’s potential to run in distributed contexts

September 30, 2024 Enabling Julia code to run at scale with artefact caching 4

Distributed computing with Julia

Julia precompiles packages and user files generating local files
that are optimized for its current CPU microarchitecture.

→ Files generated at one node are not directly available to
the other nodes.

→ When available, generated precompiled files might not be
compatible.

→ Waste of resources when running at scale on the grid

Our goal:

• Leverage Julia’s potential to run in distributed contexts

September 30, 2024 Enabling Julia code to run at scale with artefact caching 4

Distributed computing with Julia

Julia precompiles packages and user files generating local files
that are optimized for its current CPU microarchitecture.

→ Files generated at one node are not directly available to
the other nodes.

→ When available, generated precompiled files might not be
compatible.

→ Waste of resources when running at scale on the grid

Our goal:

• Leverage Julia’s potential to run in distributed contexts

September 30, 2024 Enabling Julia code to run at scale with artefact caching 4

Making cache files relocatable

The variable Base.DEPOT_PATH controls where cached
compiled package images are stored.

September 30, 2024 Enabling Julia code to run at scale with artefact caching 5

Making cache files relocatable

The variable Base.DEPOT_PATH controls where cached
compiled package images are stored.

September 30, 2024 Enabling Julia code to run at scale with artefact caching 5

Making cache files relocatable

The variable Base.DEPOT_PATH controls where cached
compiled package images are stored.

September 30, 2024 Enabling Julia code to run at scale with artefact caching 5

Making cache files relocatable

→ First entry of DEPOT_PATH must be writable, while others
entries are treated as read-only.

→ Multiple Julia projects (within the same node) use the
same local DEPOT PATH. Julia decides if cache file is
stale at runtime.

→ Can be set before startup on the terminal
export JULIA_DEPOT_PATH="/foo/bar:\$JULIA_DEPOT_PATH"

September 30, 2024 Enabling Julia code to run at scale with artefact caching 6

Making cache files relocatable (2)
Prior to Julia 1.11, the following would invalidate a cache file:

1. The absolute path of the generated cache file.

2. The file’s modification time (mtime).

3. Incompatible image targets for the host’s instruction set
architecture (ISA).

These issues are partially resolved by:

1. The candidate release Julia 1.11-rc only considers relative
path of package files

2. Copying with a procedure that respects mtime
rsync vs cp when cache files are generated from a
non-host machine.

3. Julia’s built-in cross-compilation capabilities, by setting
the environment variable JULIA_CPU_TARGET

September 30, 2024 Enabling Julia code to run at scale with artefact caching 7

Making cache files relocatable (2)
Prior to Julia 1.11, the following would invalidate a cache file:

1. The absolute path of the generated cache file.

2. The file’s modification time (mtime).

3. Incompatible image targets for the host’s instruction set
architecture (ISA).

These issues are partially resolved by:

1. The candidate release Julia 1.11-rc only considers relative
path of package files

2. Copying with a procedure that respects mtime
rsync vs cp when cache files are generated from a
non-host machine.

3. Julia’s built-in cross-compilation capabilities, by setting
the environment variable JULIA_CPU_TARGET

September 30, 2024 Enabling Julia code to run at scale with artefact caching 7

Julia’s Cross-compilation
Julia interfaces to the LLVM compiler to set image targets.

export JULIA_CPU_TARGET="generic;sandybridge;haswell,clone_all"

You could see your current image and cpu targets with
JLOptions() and Base.current_image_targets()

September 30, 2024 Enabling Julia code to run at scale with artefact caching 8

Practical implications
At CERN we could leverage the use of the Cern Virtual
machine File System (CVMFS) to make precompiled files
available.

- All projects can see the same node, effectively sharing an
entry in the DEPOT_PATH.

→ We prepare precompiled artifacts for each workflow in
turn, ”rsyncing” the cache files to that node.

- Then execute the publication:
• Open a transaction
• Copy files to the correct path in /cvmfs/
• Publish and close transaction1

- Use this cache directory in CVMFS as read-only in the
DEPOT_PATH list

1This would make publishing to CVMFS for Julia ≤ 1.10 tricky

September 30, 2024 Enabling Julia code to run at scale with artefact caching 9

Practical implications
At CERN we could leverage the use of the Cern Virtual
machine File System (CVMFS) to make precompiled files
available.

- All projects can see the same node, effectively sharing an
entry in the DEPOT_PATH.

→ We prepare precompiled artifacts for each workflow in
turn, ”rsyncing” the cache files to that node.

- Then execute the publication:
• Open a transaction
• Copy files to the correct path in /cvmfs/
• Publish and close transaction1

- Use this cache directory in CVMFS as read-only in the
DEPOT_PATH list

1This would make publishing to CVMFS for Julia ≤ 1.10 tricky

September 30, 2024 Enabling Julia code to run at scale with artefact caching 9

Practical implications
At CERN we could leverage the use of the Cern Virtual
machine File System (CVMFS) to make precompiled files
available.

- All projects can see the same node, effectively sharing an
entry in the DEPOT_PATH.

→ We prepare precompiled artifacts for each workflow in
turn, ”rsyncing” the cache files to that node.

- Then execute the publication:
• Open a transaction
• Copy files to the correct path in /cvmfs/
• Publish and close transaction1

- Use this cache directory in CVMFS as read-only in the
DEPOT_PATH list

1This would make publishing to CVMFS for Julia ≤ 1.10 tricky

September 30, 2024 Enabling Julia code to run at scale with artefact caching 9

Testing this framework with two example
workflows

We selected two use cases to test the influence of
precompilation caching:

JET Geant4
Without cache 90± 7 270± 80

With CVMFS Cache 6± 2 6± 1

Table: Time in seconds it takes for Julia to start running the workflow.

September 30, 2024 Enabling Julia code to run at scale with artefact caching10

Testing Julia’s performance integrated with
CVMFS

September 30, 2024 Enabling Julia code to run at scale with artefact caching11

Results (3): Testing Julia’s performance
integrated with CVMFS

September 30, 2024 Enabling Julia code to run at scale with artefact caching12

Automating relocation of cache files
Thanks to JuliaCon2024:

: DepotDelivery bundles a Julia project into a standalone depot that can
run in air-gapped environments.

We proceeded with a PR for our use case:

- Added support for multiple Project.toml files.
- Added support for precompilation of workflows.

September 30, 2024 Enabling Julia code to run at scale with artefact caching13

Automating relocation of cache files
Thanks to JuliaCon2024:

: DepotDelivery bundles a Julia project into a standalone depot that can
run in air-gapped environments.

We proceeded with a PR for our use case:

- Added support for multiple Project.toml files.
- Added support for precompilation of workflows.

September 30, 2024 Enabling Julia code to run at scale with artefact caching13

Summary

✓ Julia was found to greatly reduce startup time by making
use of precompiled objects for multiple
micro-architectures.

✓ Julia is able to integrate to CernVM-FS with virtually no
cost in performance.

✓ We contributed to a ready-to-use julia package to
automatically populate different applications into
directory.

September 30, 2024 Enabling Julia code to run at scale with artefact caching14

home.cern

http://home.cern

	Challenges in computational High-Energy Physics
	Julia for HEP
	Distributed computing with Julia
	Outcomes
	Summary

