
Ianna Osborne

Power of Python and Julia
for Advanced Data Analysis



Who I am
• Ianna Osborne (“ee-AN-uh”)


• Research Software Engineer


• Princeton and IRIS-HEP based at CERN


• #3 contributor to AwkwardArray


• member of CMS experiment


• #12 contributor to CMSSW (core software, geometry description, event display, simulation, etc.)


• background in Physics and Computer Science


• C++, Python, Julia


• Contact


• linkedin.com/in/ianna-osborne-9982a342


• ianna.osborne@cern.ch

https://www.linkedin.com/in/ianna-osborne-9982a342
mailto:ianna.osborne@cern.ch
https://github.com/cms-sw/cmssw
https://github.com/scikit-hep/awkward


Motivation



Motivation

https://xkcd.com/2582/


Most Used Programming Languages 
 among developers worldwide as of 2024

5

• TIOBE Index for September 2024:


• Python #1 and Julia #31

https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.tiobe.com/tiobe-index/


Why Python is so popular
 for data analysis

• Simple and easy to understand syntax


• Rich ecosystem of libraries tailored for data analysis


• Versatile, integrates well with other languages and tools


• Vast and active community


• Various programming paradigms support, including procedural, object-oriented, and 
functional programming


• Jupyter notebooks as an interactive environment where users can combine code 
execution, visualization, and narrative text


• Scalability and performance

6

CHEP2001: Python is a trend in HEP



Key features of Julia
from a data scientist’s perspective

• Speed of code execution 


• Designed for interactive use 


• Composability, leading to highly reusable code that is easy to maintain 


• Package management: built in state-of-the-art package manager 


• Ease of integration with other languages 

7



PythonCall and JuliaCall

• PythonCall & JuliaCall allow 
to call Python code from Julia 
and Julia code from Python 
via a symmetric interface.


• Using PythonCall to bring 
Python functions and libraries 
into Julia 


• Embed Julia code right into 
our Python scripts using 
JuliaCall 

8

conda install conda-forge::pyjuliacall

https://juliapy.github.io/PythonCall.jl/stable/


JuliaPkg
What if Julia is not installed?

9

• JuliaCall relies on 
JuliaPkg to discover and 
install Julia


• JuliaCall uses JuliaUp 
(which uses the default 
depot) IF it is already 
installed - you need to 
install it manually. 
Otherwise JuliaCall will 
download and install Julia 
directly into your Python 
environment, but still 
using the default depot 

https://github.com/ianna/2024-07-PyHEP-AwkwardArrays-in-Julia-for-High-Energy-Physics-Data-Analysis/blob/main/slides/awkward-julia-installation.ipynb


• JuliaUp is a recommended way to install Julia

10

curl -fsSL https://install.julialang.org | sh

Best Practices for Managing Dependencies
and keeping everything running smoothly

Important: pin Julia version!

Set or Pin a Julia Version as Default Pin a Julia Version for a Specific Project

https://github.com/JuliaLang/juliaup
















Takeaway: Maintaining functional bilingual environment is challenging!

Experimental feature?



19

https://juliahep.github.io/AwkwardArray.jl/dev/getting_started/


Practical Examples
where mixing Python and Julia really shines

20



Practical Examples
where mixing Python and Julia really shines

21



Practical Examples
where mixing Python and Julia really shines

22



Practical Examples
where mixing Python and Julia really shines

23



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

24



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

25



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

26



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

27



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

28



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

29



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

30



Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient

31



Compatibility Tools: IPython
• The line magic %julia 

code executes the given 
Julia code in-line


• The cell magic %%julia 
executes a cell of Julia 
code


• Julia's stdout and 
stderr are redirected to 
IPython


• Calling display(x) from 
Julia will display x in 
IPython

32



Summary and Outlook

• Maintaining dependencies and common runtime environment is a challenge


• Python 3.13 


• The biggest changes include a new interactive interpreter, experimental support for 
running in a free-threaded mode (PEP 703), and a Just-In-Time compiler (PEP 744).


• 3.13.0 candidate 3: Monday, 2024-09-30


• 3.13.0 final: Monday, 2024-10-07


• Subsequent bugfix releases every two months.


• Potential for deeper integration and community-driven innovation

33

https://docs.python.org/3.13/whatsnew/3.13.html#whatsnew313-better-interactive-interpreter
https://docs.python.org/3.13/whatsnew/3.13.html#whatsnew313-free-threaded-cpython
https://peps.python.org/pep-0703/
https://docs.python.org/3.13/whatsnew/3.13.html#whatsnew313-jit-compiler
https://peps.python.org/pep-0744/


34

https://dataedo.com/cartoon/legacy-software

