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Who I am
• Ianna Osborne (“ee-AN-uh”)


• Research Software Engineer


• Princeton and IRIS-HEP based at CERN


• #3 contributor to AwkwardArray


• member of CMS experiment


• #12 contributor to CMSSW (core software, geometry description, event display, simulation, etc.)


• background in Physics and Computer Science


• C++, Python, Julia


• Contact


• linkedin.com/in/ianna-osborne-9982a342


• ianna.osborne@cern.ch

https://www.linkedin.com/in/ianna-osborne-9982a342
mailto:ianna.osborne@cern.ch
https://github.com/cms-sw/cmssw
https://github.com/scikit-hep/awkward


Motivation



Motivation

https://xkcd.com/2582/


Most Used Programming Languages 
 among developers worldwide as of 2024
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• TIOBE Index for September 2024:


• Python #1 and Julia #31

https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.tiobe.com/tiobe-index/


Why Python is so popular
 for data analysis

• Simple and easy to understand syntax


• Rich ecosystem of libraries tailored for data analysis


• Versatile, integrates well with other languages and tools


• Vast and active community


• Various programming paradigms support, including procedural, object-oriented, and 
functional programming


• Jupyter notebooks as an interactive environment where users can combine code 
execution, visualization, and narrative text


• Scalability and performance
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CHEP2001: Python is a trend in HEP



Key features of Julia
from a data scientist’s perspective

• Speed of code execution 


• Designed for interactive use 


• Composability, leading to highly reusable code that is easy to maintain 


• Package management: built in state-of-the-art package manager 


• Ease of integration with other languages 
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PythonCall and JuliaCall

• PythonCall & JuliaCall allow 
to call Python code from Julia 
and Julia code from Python 
via a symmetric interface.


• Using PythonCall to bring 
Python functions and libraries 
into Julia 


• Embed Julia code right into 
our Python scripts using 
JuliaCall 
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conda install conda-forge::pyjuliacall

https://juliapy.github.io/PythonCall.jl/stable/


JuliaPkg
What if Julia is not installed?
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• JuliaCall relies on 
JuliaPkg to discover and 
install Julia


• JuliaCall uses JuliaUp 
(which uses the default 
depot) IF it is already 
installed - you need to 
install it manually. 
Otherwise JuliaCall will 
download and install Julia 
directly into your Python 
environment, but still 
using the default depot 

https://github.com/ianna/2024-07-PyHEP-AwkwardArrays-in-Julia-for-High-Energy-Physics-Data-Analysis/blob/main/slides/awkward-julia-installation.ipynb


• JuliaUp is a recommended way to install Julia
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curl -fsSL https://install.julialang.org | sh

Best Practices for Managing Dependencies
and keeping everything running smoothly

Important: pin Julia version!

Set or Pin a Julia Version as Default Pin a Julia Version for a Specific Project

https://github.com/JuliaLang/juliaup
















Takeaway: Maintaining functional bilingual environment is challenging!

Experimental feature?
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https://juliahep.github.io/AwkwardArray.jl/dev/getting_started/


Practical Examples
where mixing Python and Julia really shines
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Real-world scenarios
how this combination can speed up our data analysis and make our work more efficient
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Compatibility Tools: IPython
• The line magic %julia 

code executes the given 
Julia code in-line


• The cell magic %%julia 
executes a cell of Julia 
code


• Julia's stdout and 
stderr are redirected to 
IPython


• Calling display(x) from 
Julia will display x in 
IPython
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Summary and Outlook

• Maintaining dependencies and common runtime environment is a challenge


• Python 3.13 


• The biggest changes include a new interactive interpreter, experimental support for 
running in a free-threaded mode (PEP 703), and a Just-In-Time compiler (PEP 744).


• 3.13.0 candidate 3: Monday, 2024-09-30


• 3.13.0 final: Monday, 2024-10-07


• Subsequent bugfix releases every two months.


• Potential for deeper integration and community-driven innovation
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https://docs.python.org/3.13/whatsnew/3.13.html#whatsnew313-better-interactive-interpreter
https://docs.python.org/3.13/whatsnew/3.13.html#whatsnew313-free-threaded-cpython
https://peps.python.org/pep-0703/
https://docs.python.org/3.13/whatsnew/3.13.html#whatsnew313-jit-compiler
https://peps.python.org/pep-0744/
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https://dataedo.com/cartoon/legacy-software

