JuliaHEP W

hop 2024

Unveiling the Jet Substructure

using Julia

Sattwamo Ghosh

Department of Physical Sciences,
Indian Institute of Science Education and Research, Kolkata, India

Supervised by
Dr. Sanmay Ganguly

Assistant Professor, Department of Physics,
Indian Institute of Technology, Kanpur, India

October 1, 2024

Unveiling the Jet Substructure using Julia

@ Introduction

Unveiling the Jet Substructure using Julia

Introduction

What is Jet Substructure?

* Jet substructure refers to the internal structure of jets. It provides detailed
information about the nature of the particles that initiated the jet (quarks,
gluons, boosted heavy objects like W/Z/H bosons).

e Jet substructure analysis is essential for identifying boosted heavy particles in
the search for new physics (e.g., Higgs boson, dark matter candidates).

Low top pr High top py N

JuliaHEP Workshop 2024 Unveiling the Jet Substructure using Julia October 1, 2024

Implementation

@ Implementation of Substructure Modules in Julia

hop 2024 Unveiling the Jet Substructure using Julia

Implementation

* The FastJet C++ package (and the corresponding Python bindings) provides
numerous methods for substructure analysis.

* Out of these, we have successfully implemented the MassDrop Tagger,
SoftDrop Tagger, John-Hopkin’s Top Tagger, Jet Filtering and Jet
Trimming algorithms into Julia.

JuliaHEP Workshop 2024 Unveiling the Jet Substructure using Julia October 1, 2024

Implementation

Drop Tagger

The MassDrop Tagging algorithm was implemented in Julia, following a similar
structure to the corresponding FastJet code (a part of it is given below)

Jet NassDroptagger::
eudo. i 1h

resulf(const Pseudolet & jet) const{

7 1§sun a warning if the jet is not obtained through a C/A
77 clusty
{(1°5oha

struct MassDropTagger
s :Floatss
64
sequence()) ||
i) Jet def (1,16t algoritha() 1= canbridge algorithm))
_WaThings nonca.warn{ "Ma3sbropTagger should only be applied on jets from a Canbridge/Aachen clustering;
ction appy_nassdrop
Pseudo j2 alllets = clusterseq. jets
Coot had pdrent3 hist = clustersea. history
// we just ask that ve can " n the cluster sequence. pite
77 sppropriate errors will be thrown automaticatly if this is not 4 <)
7 Lparents, p1, p2 = has_parents jet, hist)
((had, Deren(s = j.has_parents(j1,j2))) {
(j.m(7 < (hatloaren
_iiative-nass tarning. ad_parents)
“MssshroDTa??ar SaTeRt (subset has mass"2<=0; returning nulL jet');
Pae
7/ nake parent1 the mare massive Jet
OB < Gams () sed?

parent1 = allJets [hist (pL).fetp_index]
Wets [hist [p2] . jetp_index]

tswap(11,32); 2(parent2))
1 e pass the conditions on the mass drop and its degree of .
77 asymmetry” (kt_dist/m2 > rtycut [where kt_dist/m" B e
7737082}, ther e Ve found Something nteresting, so exit the end

o0p

{(3:020 < _momurg.5200) 66 (1Kt sistance(32) > yeuts).n20)))

i ((n2(parent1) <

(thad_parents)

/4,10 Rigos foundy return an enpty Pseudolet
oJet

parentt
1/ create the result and its structure

Bletdodet result.locat =

75 N
Coldineliasno;

result_local.set_structure_shared_ptr(sharedptr

ssDropTaggerstructure(result_local);

<PseudodetStructureBase>(s));
R result_local;

Unveiling the Jet Substructure using Julia

Implementation

Drop Tagger

The same dataset was used for clustering and tagging in Python and Julia. The
obtained results were concurrent with each other (as can be seen below).

UnTagged Jets

MassDrop Tagged Jets from Julia
PN
Y)

2o

MassDrop Tagged Jets from Python

Figure 1: Plotting the n— ¢ space for a particular event and using MDT

JuliaHEP V hop 2024

Unveiling the Jet Substructure using Julia

Implementation

John-Hopkins” Top Tagger

The JH Top Tagger was implemented similarly and a similar analysis was carried
out. The obtained results were concurrent with each other (as can be seen below).

Urfagged Jets John-FiopKins Top Tagged Jets from Juia BT Top TG e e P
o0 . L] LJ
) 000 . . ° . . e
. B . B @ . i
‘ - ’ . ’ o
o > ®e | e
ae) % o e
[@a e ® o d
° ‘e o ° TS B . =
o o ..
. s . .
lo] o, | * e g
SR N RTINS & .. g
K . . .]
. . ° ot e . | .
o . 'y @ o . o . o
‘e DS
-® : © .0 : .
° 9. o ° ® - . ‘0 e
L S, . o 6 v, G o & .
- ’ .t ¢ R : ‘ o 2) 7 3 o

Figure 2: Plotting the n— ¢ space for a particular event and using JH Top Tagging

JuliaHEP V hop 2024 Unveiling the Jet Substructure using Julia

Implementation

Jet Filtering & Jet Trimming

Coming to jet filtering and trimming,
we follow a similar approach for the Julia implementation.

end;

end;

ct Filter
filterRadius: :Float64
nunHardestJets:

rad = filter
new_clusterseq = re
reclustered =

ilter(jet::

n gth(reclustered)
hard = reclustered[1:n]
filtered = join(hard)

filtered

uliaHEP

«Filter() t3/a1

fastjet:Filtr:Filter (double Rt
Selector selector,
double tho=0.0

)

Samo as the (s00 above) but the radius By defau,

Parameters
Rilt the fitering radius

Definition at ine 124 of file Filter.nh

Pseudolet, clusterseq::ClusterSequence, filter::Filter)

ilterRadiu:

clusterseq))

er(jet, clusterseq, ra
(get_inclu

<= filter.numHardestlets 7 length(reclustered) : filter.nunHardestlets

202 Unveiling the

Jet Substructure using Julia

is used I the ot (or al its pieces) is obtained with a non-default recombiner, that one will be used.

Trin
trinRadius:
trinFraction
reclustertethod:

(et
rad = trin. trisRadius
ntd = trin. reclusterMethod
frac2 = trim.trisfraction

eudodet,

new_clusterseq
reclustered

trinmed

Implementation

Jet Filtering

The results of filtering in Julia was compared with Python, but this time, we
visualise it a bit differently. In the adjoining plots, the y-axis represents the
groomed parameters as obtained from Julia, and the x-axis represents the groomed
parameters obtained from Python.

° 5

17.5

© musedier) -

15.0

125

10.0

Filtered pT obtained from Julia (GeV)
Filtered jet eta obtained from Julia
%

2.5 5.0 7.5 10.0 12.5 15.0 17.5 [1 2 3 4 5
Filtered pT obtained from Python (GeV) Filtered jet eta obtained from Python

Figure 3: Comparing filtered pT Figure 4: Comparing filtered eta

JuliaHEP V hop 2024 Unveiling the Jet Substructure using Julia 10 / 18

Implementation

Jet Trimming

A similar analysis for the jet trimming algorithm was done, and the following plots

were obtained.

© Toggedjet
LinearFit{Float64}((0.0, 1.0))
_ 4
s °
]
e
o .
ES
£
23 o
hat .
2 o
3 o
bt
3
e
=
s .
3 2
£
£ o
=
o
1
.

1 2 3 4
Trimmed pT obtained from Python (GeV)

Figure 5: Comparing trimmed pT

hop 2024

Trimmed jet eta obtained from Julia

‘ © Taggeder

— \

Figure 6: Comparing trimmed eta

Unveiling the Jet Substructure using Julia

2 3
Trimmed jet eta obtained from Python

4

©® Comparison of Performance with Pre Existing Bindings

hop 2024 Unveiling the Jet Substructure using Julia

Jet Filtering

Efficiency

Clustering Algorithm: Cambridge-Aachen (with R = 0.6)
Jet Filtering parameters:

n

350
300
250
200

150

Avg time taken (us/event)

100

50

Rpp =03, npge=3

Figure 7: Time Comparison:Jet Filtering

200 300 400
<n> initial particles

hop 2024

500 600

Unveiling the Jet Substructure using Julia

Avg time taken (s/event)

400 [8
300
200 H
o M °
100 ° °
8 °
100 200 300 400 500 600
<n> initial particles

Figure 8: Time Comparison:Jet Trim

Jet Trim parameters:

Rtm’m =0.3, ftrim =0.3

Efficiency

Mass Drop Tagger & JH Top Tagger

Mass Drop parameters: JH Top Tagging parameters:
Ueut = 0.67, Yoy =0.09 Apr=0.1, Ar=0.19, Acosf =0.7
60 . 8 ..
° 200
50 R .
é 40 . é 150 °
£ 30 . £
.né ° E 100 H
g2 y H .
. so .
0, o o .
° . ° e o ° e ° o o e ° ° °©
ole e ° e o © olee °
100 200 300 400 500 600 100 200 300 400 500 600
<n> initial particles <n> initial particles
Figure 9: Time Comparison: Figure 10: Time Comparison:
Mass Drop Tagging JH Top Tagging

JuliaHEP W Unveiling the Jet Substructure using Julia

Overall Comparison

The following table contains the ratio of execution times, for each method, in
Python to the corresponding Julia implementation, for various average no. of
particles (<n>)

<n> | Filter | Trim | MassDrop | JH Top Tag
43 1.31 1.71 15.32 7.13
113 1.74 2.09 18.85 8.99
188 1.47 1.64 25.42 8.58
227 1.17 1.29 15.59 6.94
355 1.07 1.06 14.64 9.03
525 0.97 0.96 14.56 7.98
633 0.81 0.79 15.19 7.93

Table 1: Ratio of execution times (Python:Julia) for each method

JuliaHEP Workshop 2024 Unveiling the Jet Substructure using Julia October 1, 2024

@ Conclusion

Unveiling the Jet Substructure using Julia e g 16 / 18

Conclusion

Plans Moving Forward

* Optimise and improve the built modules
* Add the remaining modules
* Contribute to the already existing code base

* Add support for flavored jet tagging

I have added all the codes I have developed till now in this GitHub repository:
QOjulia-JetSubstructure(https: //github.com/sattwamo/julia-JetSubstructure)

JuliaHEP W hop 2024 Unveiling the Jet Substructure using Julia October 1, 2024

https://github.com/sattwamo/julia-JetSubstructure
https://github.com/sattwamo/julia-JetSubstructure

THANK YOU.

Unveiling the Jet Substructure using Julia

	Introduction
	Implementation of Substructure Modules in Julia
	Comparison of Performance with Pre Existing Bindings
	Conclusion

