Simulation for the Tau Air-Shower Mountain-Based Observatory

Jeff Lazar on behalf of TAMBO 01 Oct., 2024 JuliaHEP 2024 Geneva, Switzerland

Outline

- Introduction to neutrino astronomy
- Introduction to the Tau Air-Shower Mountain-Based Observatory (TAMBO)
- The TAMBO simulation stack
- TAMBO status and prospects
- Final comments about Julia in neutrino astronomy

Goals of Neutrino Astro

- Cherenkov neutrino observatories use optical modules to detect charged byproducts of neutrino interaction
- Goal of detecting and characterizing diffuse astrophysical flux and finding neutrino point sources

Roadmap Towards Future Discovery

- Beginning to see features in spectrum
- *Challenge*: Hard to go beyond current energy range due to large backgrounds and low stats
- Flavor degeneracy along ν_{ρ} / ν_{τ} axes
- *Challenge*: Difficult to distinguish τ^{\pm} at relevant energies

- Current point make up <1% of diffuse flux
- Challenge: Current search strategies lead to huge trials factors

Outline

- Introduction to neutrino astronomy
- Introduction to the Tau Air-Shower Mountain-Based Observatory (TAMBO)
- The TAMBO simulation stack
- TAMBO status and prospects
- Final comments about Julia in neutrino astronomy

AIR SHOWER:

3 – 10 KM LENGTH 200 M DIAMETER

DECAY •

RANGE: 50 M – 5 KM

~100 M³ SEPARATION

- WATER CHERENKOV DETECTOR ARRAY

~M³ EACH

DEEP VALLEY

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

ROCK

> 4 KM SHIELDING FROM BACKGROUND MUONS

CHARGED-CURRENT INTERACTION

A ν_{τ} Sieve

Passing the Energy Baton

TAMBO regime

Reducing IceCube's Trials Factor

- - What if we knew exactly where to point?
- Low-background, astrophysical ν_{τ} from TAMBO remove trial factor from IceCube

Outline

- Introduction to neutrino astronomy
- Introduction to the Tau Air-Shower Mountain-Based Observatory (TAMBO)
- The TAMBO simulation stack
- TAMBO status and prospects
- Final comments about Julia in neutrino astronomy

11

An Initial Estimation

Initial Calculation

- Simplified geometry
- No treatment of τ^{\pm} energy losses
- Approximation of air-shower physics

Updated Simulation

- Realistic geometry
- Full treatment of τ^{\pm} energy losses
- Air-shower simulation with CORSIKA 8

4

Initial neutrino injection: Select initial neutrino properties, *i.e.* energy, direction, interaction vertex, etc.

13

4

Initial neutrino injection: Select initial neutrino properties, *i.e.* energy, direction, interaction vertex, *etc*.

Charged lepton propagation: Propagate outgoing charged lepton, accounting for energy losses and decay, to find decay point

, ,

Initial neutrino injection: Select initial neutrino properties, *i.e.* energy, direction, interaction vertex, *etc*.

Charged lepton propagation: Propagate outgoing charged lepton, accounting for energy losses and decay, to find decay point

Air-shower simulation: Model shower development from lepton decay

,

Initial neutrino injection: Select initial neutrino properties, *i.e.* energy, direction, interaction vertex, *etc*.

Charged lepton propagation: Propagate outgoing charged lepton, accounting for energy losses and decay, to find decay point

Air-shower simulation: Model shower development from lepton decay

Detector response: Simulate internal hardware to model what we will see

.

Initial neutrino injection: Select initial neutrino properties, *i.e.* energy, direction, interaction vertex, *etc*.

Charged lepton propagation: Propagate outgoing charged lepton, accounting for energy losses and decay, to find decay point

Air-shower simulation: Model shower development from lepton decay

Detector response: Simulate internal hardware to model what we will see

Event weighting: Remove unphysical remnants from selection of initial neutrino properties

Effective Area Comparison

Full Timing Information

- Full simulation chain gives full timing information, enabling:
 - Pretty event displays
 - Reconstruction

Full Timing Information

- Full simulation chain gives full timing information, enabling:
 - Pretty event displays
 - Reconstruction

Julia-Based* Simulation Chain

- Cherenkov neutrino observatories use optical modules to detect charged by-products of neutrino interaction
- Goal of detecting and characterizing diffuse astrophysical flux and finding neutrino point sources

Julia-Based* Simulation Chain

- Event sampling
- Tau neutrino transport with TauRunner
- Charged lepton transport with PROPOSAL
- Tau decay with PROPOSAL or **TAUOLA**

• Air-shower simulation with CORSIKA8

- PE conversion
- Module triggering
- Detector triggering
- Oneweight and rate calculations
- Effective area calculations

17

Julia-Based* Simulation Chain

Initial neutrino injection

Charged lepton propagation

Air-shower simulation

- Event sampling
- Tau neutrino transport with TauRunner

- Charged lepton transport with PROPOSAL
- Tau decay with PROPOSAL or TAUOLA

• Air-shower simulation with CORSIKA8

Detector response

• PE conversion

- Module triggering
- Detector triggering

Event Weighting

- Oneweight and rate calculations
- Effective area calculations

17

Outline

- Introduction to neutrino astronomy
- Introduction to the Tau Air-Shower Mountain-Based Observatory (TAMBO)
- The TAMBO simulation stack
- TAMBO status and prospects
- Final comments about Julia in neutrino astronomy

Site Optimization

- Peak particle count occurs between 7 and 9 km after shower initiated
- Nominal TAMBO location has separation of ~4.5 km

Site Optimization

- Currently trawling the canyon for the widest points
- Not clear whether maximizing distance is the imperative
- We need to test this in several configurations

Trigger Optimization

- When using the trigger definition from the previous study, we are particle starved
- Relaxing this trigger could

Panel Construction and Array Development

- Scintillator panels under construction via the Harvard group
 - 4 constructed and material to make 10 procured
- Array communications and readout being developed at PUCP

Outline

- Introduction to neutrino astronomy
- Introduction to the Tau Air-Shower Mountain-Based Observatory (TAMBO)
- The TAMBO simulation stack
- TAMBO status and prospects
- Final comments about Julia in neutrino astronomy

Opportunities to Julia-ify Simulation Stack

- TAMBO is relatively committed to using Julia
- A new generation of neutrino telescopes is coming online. This is a good chance to act • There are three main points where we use non-Julia workarounds:
 - Extending injection framework to be more flexible: Medium
 - Transporting ν_{τ} through the Earth: Easy
 - Propagating final-state leptons: Relatively hard
 - Decaying final-state leptons: Medium
 - Propagating air-showers: Very hard
- These last three are definitely multi-person efforts, which I would be happy to contribute to if there is broader interest

Ouestions I have !

- Is there a Makie-based event display package, and if so, how flexible is it ?
- Is there a conventional way to schedule jobs via a Julia interface. Everything except airshower simulation is fast and so we would like a wa to run only that part distributedly.

TAMBO Team

Thank you :-)

