

Generating Feynman Diagrams for QED in Julia

Anton Reinhard^{1,2}, Simeon Ehrig^{1,2}, Uwe Hernandez Acosta^{1,2}

¹Helmholtz-Zentrum Dresden-Rossendorf, ²Center for Advanced Systems Understanding

30.09.2024

 Generate Feynman diagrams for tree-level perturbative Quantum Electrodynamics (QED) for arbitrary scattering processes

- Generate Feynman diagrams for tree-level perturbative Quantum Electrodynamics (QED) for arbitrary scattering processes
- Generate computable functions calculating the matrix elements for given particle momenta

- Generate Feynman diagrams for tree-level perturbative Quantum Electrodynamics (QED) for arbitrary scattering processes
- Generate computable functions calculating the matrix elements for given particle momenta
- Reuse as much as possible

- Generate Feynman diagrams for tree-level perturbative Quantum Electrodynamics (QED) for arbitrary scattering processes
- Generate computable functions calculating the matrix elements for given particle momenta
- Reuse as much as possible
- Do it in Julia

- Generate Feynman diagrams for tree-level perturbative Quantum Electrodynamics (QED) for arbitrary scattering processes
- Generate computable functions calculating the matrix elements for given particle momenta
- Reuse as much as possible
- Do it in Julia
- Benefit from easy CPU and GPU parallelization

Generating Diagrams in Tree-Level QED - Example

Generating Diagrams in Tree-Level QED - Example

Generating Diagrams in Tree-Level QED - Example

■ $\binom{m+3n-3}{3n-3}$ ways to connect external photons where *n* is the number of fermion lines and *m* is the number of photons

\$\begin{pmatrix} m+3n-3 \\ 3n-3 \end{pmatrix}\$ ways to connect external photons where n is the number of fermion lines and m is the number of photons
\$\text{finally, permute the photons: m!}\$

Generating Diagrams in Tree-Level QED - Scaling

$$N_{\text{diags}}(e, u, t, m) = \frac{(m + 3n - 3)!}{(2n - 1)!} \cdot e! \cdot u! \cdot t!$$

where $n := e + u + t$

Generating Diagrams in Tree-Level QED - Scaling

$$N_{\text{diags}}(e, u, t, m) = \frac{(m+3n-3)!}{(2n-1)!} \cdot e! \cdot u! \cdot t!$$

where n := e + u + t

Transform to Computable DAG

- Represent the computation for the matrix element as a directed acyclic graph (DAG)
- Use ComputableDAGs.jl
- Allows dynamic construction, analysis, scheduling, and execution (threaded, GPU, etc.)

Transform to Computable DAG - Distributivity

Transform to Computable DAG - Distributivity

Transform to Computable DAG

• Only $2^{n-1} - 1$ possible inner particle momenta, not factorial¹

10/26 Generating Feynman Diagrams for QED in Julia + 30.09.2024

¹Mauro Moretti, Thorsten Ohl, and Jürgen Reuter. O'Mega: An Optimizing Matrix Element Generator. 2001. arXiv: hep-ph/0102195 [hep-ph]. URL: https://arxiv.org/abs/hep-ph/0102195.

Transform to Computable DAG

■ Only 2ⁿ⁻¹ - 1 possible inner particle momenta, not factorial¹
■ ⇒ Consider subdiagrams consisting of particle sets

10/26 Generating Feynman Diagrams for QED in Julia + 30.09.2024

¹Mauro Moretti, Thorsten Ohl, and Jürgen Reuter. O'Mega: An Optimizing Matrix Element Generator. 2001. arXiv: hep-ph/0102195 [hep-ph]. URL: https://arxiv.org/abs/hep-ph/0102195.

 External particle type, spin or polarization, and momentum as input

- External particle type, spin or polarization, and momentum as input
- Output "propagated" value for the particle set containing only this particle (external leg)

- External particle type, spin or polarization, and momentum as input
- Output "propagated" value for the particle set containing only this particle (external leg)
- Phase space point, momentum contribution map, and virtual particle type as input

- External particle type, spin or polarization, and momentum as input
- Output "propagated" value for the particle set containing only this particle (external leg)
- Phase space point, momentum contribution map, and virtual particle type as input
- Output a propagator to be used later to propagate the particle set values

Transform to Computable DAG - Pairing

 Take two disjunct particle sets, multiply them, add vertex term

Transform to Computable DAG - Pairing

- Take two disjunct particle sets, multiply them, add vertex term
- Output unpropagated value for the particle set containing the particles of both subsets

Transform to Computable DAG - Sum Pairs

Take all unpropagated particle sets of the same contents

Transform to Computable DAG - Sum Pairs

- Take all unpropagated particle sets of the same contents
- Output unpropagated sum of all values of particle sets containing the given particles

Transform to Computable DAG - Propagate Summed Pairs

 Take a summed unpropagated value for a particle set and the respective virtual particle's propagator

Transform to Computable DAG - Propagate Summed Pairs

- Take a summed unpropagated value for a particle set and the respective virtual particle's propagator
- Output propagated sum of all values of particle sets containing the given particles

Transform to Computable DAG - Propagate Summed Pairs

- Take a summed unpropagated value for a particle set and the respective virtual particle's propagator
- Output propagated sum of all values of particle sets containing the given particles
- Repeat until subdiagrams contain half of an entire diagram

Transform to Computable DAG - Triples

 Like pair, but take three summed and propagated subdiagrams

Transform to Computable DAG - Triples

- Like pair, but take three summed and propagated subdiagrams
- Output summed value for a number of diagrams

Transform to Computable DAG - Sum Triples

Like sum pairs, but for the triples

Transform to Computable DAG - Sum Triples

- Like sum pairs, but for the triples
- Output summed value for all diagrams, for the given process and one spin and polarization combination

Transform to Computable DAG - Matrix Element

 Finally, abs2 sum over spin and polarization combinations

Transform to Computable DAG - Matrix Element

- Finally, abs2 sum over spin and polarization combinations
- Output the computed squared matrix element

Transform to Computable DAG - Matrix Element

- Finally, abs2 sum over spin and polarization combinations
- Output the computed squared matrix element

Results - Reproducibility

The following results can be reproduced using the Jupyter notebooks at this URL:

https://github.com/AntonReinhard/QEDFeynmanDiagrams.jl/tree/profiling/profiling

Results - $e^- + e^+ \rightarrow n(e^- + e^+)$ - DAG Sizes

Results - $e^- + e^+ \rightarrow n(e^- + e^+)$ - DAG Sizes

Results - $e^- + e^+ \rightarrow n(e^- + e^+)$ - DAG Computation Time

Results - Profiling Flamegraph

(::RuntimeGeneratedFunction{(:data_input,), ComputableDAGs.var\"#_RGF_ModTag\", var\"#_RGF_ModTag\", (0x68665346, 0x3584d11e, 0xf2105fac, 0x53f09fd9, 0xc708ef77), Expr})(::P													r})(::P			
ger	generated_callfunc															
ma	macro expansion															
ma	macro expansion															
	compute	ompute														
	*															
											dot(::SLorentzVector{Dirac					
	_mul	mut little litt										t				
	*	*(::LinearAlgebra.Transpose{ComplexF64, AdjointBiSpinor}, ::DiracMatrix)									wski_do	t				
	*		_mul		*					*						
			*(::LinearAl	Π	_mul					map						
	*				macro expansion											
			_mul		* muladd					macro) ex					
			macro exp	Г	* muladd					#282						
			muladd							*						
			muladd							*						

Summary

The soon[™] to be registered package QEDFeynmanDiagrams.jl can:

- Generate ComputableDAGs for arbitrary scattering processes in tree-level perturbative QED ²
- Maximally reuse results, even across different spin and polarization combinations
- Generate matrix elements for synced spins or polarizations with result reuse
- Provide documentation with usage examples

The code is already publicly available

ComputableDAGs.jl

QEDFeynmanDiagrams.jl

²currently excluding muons and tauons until they are implemented in QuantumElectrodynamics.jl

Outlook

- Relative negation of diagrams with exchanged fermions is not yet implemented
- Compare to existing solutions (MadGraph5 [2], O'Mega [1], SHERPA [3])
- Extension for other quantum field theories through generalized diagram generation
- Consider vectorization inside the graph
- Find ways to improve startup times

Acknowledgements

Collaborators:

- **Dr. Uwe Hernandez Acosta**^{1,2}
- Simeon Ehrig^{1,2}

¹Center for Advanced Systems Understanding (CASUS) ²Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Discussion

References

- Mauro Moretti, Thorsten Ohl, and Jürgen Reuter. O'Mega: An Optimizing Matrix Element Generator. 2001. arXiv: hep-ph/0102195 [hep-ph]. URL: https://arxiv.org/abs/hep-ph/0102195.
- [2] Johan Alwall et al. "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations". In: *Journal of High Energy Physics* 2014.7 (2014), pp. 1–157.
- [3] Tanju Gleisberg et al. "Event generation with SHERPA 1.1". In: Journal of High Energy Physics 2009.02 (2009), p. 007.
- [4] Tim Besard, Christophe Foket, and Bjorn De Sutter. "Effective extensible programming: unleashing Julia on GPUs". In: *IEEE Transactions on Parallel and Distributed Systems* 30.4 (2018), pp. 827–841.
- [5] Stefan Karpinski et al. Why we created julia. Feb. 2012. URL: https://julialang.org/blog/2012/02/why-we-created-julia/.
- [6] Valentin Churavy et al. "Bridging HPC Communities through the Julia Programming Language". In: arXiv preprint arXiv:2211.02740 (2022).

Results - $e^- + e^+ \rightarrow n(e^- + e^+)$ - DAG Generation Time

Results - $e^- + k \gamma \rightarrow e^- + \gamma$ - DAG Generation Time

Results - $e^- + k \gamma \rightarrow e^- + \gamma$ - DAG Sizes

Results - $e^- + k \gamma \rightarrow e^- + \gamma$ - DAG Sizes

Results - $e^- + k \gamma \rightarrow e^- + \gamma$ - DAG Computation Time

Benchmarking Machine

Home PC with

- Ryzen 7900X3D
- 2×32GB DDR5 RAM @ 6000MHz

Julia v1.10

