
Julia in Trigger Level
Analysis of Z′ → bതb

1

MICHAEL FARRINGTON

Analysis Team

2

Jerry Ling
PhD Student

Michael
Farrington

PhD Student

Aaron White
Postdoc

Rongkun
Wang

Postdoc

Melissa
Franklin

Professor

Stefano
Franchellucci
PhD Student

Physics Model

3

—We are searching for a new heavy, neutral vector boson
𝑍′

—The 𝑍′ is produced in association with an initial state
radiation (ISR) photon and decays to two bottom
quarks

—The trigger requires 2 jets with 𝑝𝑇 > 25 GeV and a
photon with 𝑝𝑇 > 35 GeV

ATLAS Trigger Chain

4

CTP

HLT Trigger

Sub-Detector Triggers

100 kHz Trigger Rate

Storage

1 kHz Trigger Rate

—The ATLAS Trigger Chain can be divided into three main steps

1. Sub- Detector Level Triggers: Individual sub-detectors implement a trigger
based on raw kinematics

2. Central Trigger Processor (CTP): The CTP collects and makes a trigger decision
based on a combination of all the sub-detector triggers

3. High Level Trigger (HLT): Final trigger decision made at the software level with more
accurately reconstructed variables

Trigger Level Analysis
—Trigger Level Analysis (TLA) let’s us get in the middle of this chain by

choosing to save partial event information at the HLT level
to use a looser trigger

—We get a higher event rate and no pre-scaling, but get less
information in each event e.g. no muons, no tracks

—This makes TLA competitive when you want to set
low 𝑝𝑇 triggers and are statistically limited

CTP

Sub-Detector Triggers

100 kHz Trigger Rate

Storage

1 kHz Trigger Rate

TLA

5

Current Z’ Limits

6

—The goal is to constrain the coupling between
the Z’ and quarks denoted 𝑔𝑞

—The aim is to set limits in the sub 200 GeV mass
range

—The goal is to set limits down to 𝑔𝑞 ≤ 0.1

Current Z’ Limits

7

—The goal is to constrain the coupling between
the Z’ and quarks denoted 𝑔𝑞

—The aim is to set limits in the sub 200 GeV mass
range

—The goal is to set limits down to 𝑔𝑞 ≤ 0.1

Competitive
Region

B-Tagging in TLA

8

—To identify jets produced by bottom quarks in our detector, we use a deep sets algorithm that
is fed track level variables in the HLT

—This is a standard ATLAS algorithm which is typically used in the HLT as a loose b cut

Workflow Overview

9

DAOD C++
ROOT
ntuple

Julia Histograms

—The workflow starts by producing ROOT ntuples from the standard ATLAS data format (DAOD)
using C++

—Once custom ntuples are made, Julia can be used to decode them and make and analyze
histograms

—For this study we have both signal MC and a few runs of unblinded data to use

ntuple Production

10

DAOD C++
ROOT
ntuple

—To produce ntuples, we need to use ATLAS software to loop through DAOD trees and decode
custom objects where the data is stored

—Because the data is stored in ATLAS custom objects, this step of the analysis cannot be done in
Julia

ntuple Reading

11

—The analysis ntuples are read out using UnROOT and are processed through our analysis cuts

—UnROOT LazyTree structure for reading out trees is fast and malleable, allows you to easily
parse tree by rows or columns

Cuts and Histogram Production

12

—The main source of background our cuts are trying to eliminate is non-resonant QCD
background

—The primary cut is to require both the leading and subleading jets to be “b-tagged”
which in this case means their b-score is
above 0

—Additionally apply cuts requiring photon to be
isolated and the two jets to be close in
𝜂 i.e. 𝑦∗ < 0.8

—Histograms are then made using FHist,
very easy package to use, lets you
manipulate histograms e.g. rebinning

Data Signal MC

Mass Histogram

13

—The analysis centers around performing a “bump hunt”
on the invariant mass distribution of the leading
two b jets

—With the b jet mass histogram, a fit can be performed
to find and subtract off the background

—Need to use PyHF for this step, there is currently no
standard HEP Julia package for fitting

Histogram Fitting

14

—The analysis fits a falling distribution from the ATLAS recommendations to model the
background as

where and the 𝑝𝑖 are the parameters to be fitted

—Using a power law offers enough flexibility to fit our background while still being “rigid”
enough to not overfit and eliminate any narrow resonance signals

Sensitivity Studies

15

—To optimize cuts, we use PyHF to set an upper limit on the signal strength 𝜇 or equivalently
a lower limit on 𝑔𝑞

—PyHF is taking the falling function we fit to the mass
distribution as the background model and
the Z’ MC as our signal model

—Then a likelihood method is used to estimate how much
signal we could be seeing in our data

Julia in the Main Analysis

16

—Julia is extensively used in the main analysis workflow once ntuples have been produced

—Julia offers many useful tools for reading ROOT files, making histograms, more exploratory ML
techniques, etc. so it’s what we use “day-to-day”

—There are still unfortunately non-Julia portions of this workflow in ntuple production and signal
model fitting as well as in peripheral tasks e.g. calibrations, simulations, etc.

Hemisphere Mixing

17

—Attempt to use a data-driven method to model the QCD background in our data sample by
creating synthetic data out of real events

—Premise relies on the fact that in a true Z’ event, there should be delicate correlations in the
kinematics that aren’t present in background

—Procedure
1. Split a data event geometrically into two hemispheres

2. Pair two hemispheres by minimizing a chosen metric, in this case 𝐸𝑇1 − 𝐸𝑇2

3. Rotate the two hemispheres to match and form a new synthetic event

Split

18

—The events are split by bisecting the angle between the two b jets

—Each hemisphere gets the jets/photons on its side of the bisecting plane

b

q

b𝜸

Dividing Plane

Pair

19/

—Hemispheres a photon are paired with hemispheres without a photon based on our metric

Hemispheres with the
photon

Hemispheres without the
photon

Rotate

20

—The rotation is designed to make the planes splitting the hemispheres of two different planes
overlap

𝒒
Rotation

b

Julia in Hemisphere Mixing

21

—Julia offered tools which made development of this algorithm straightforward

—It was easy to convert from “ATLAS Coordinates” 𝑝𝑇 , 𝜂, 𝜙,𝑚 to Cartesian 𝐸, 𝑝𝑥, 𝑝𝑦 , 𝑝𝑧 using
LorentzVectorHEP.jl

—Rotations.jl made it very easy to find the rotation matrices needed to match up hemispheres
saves you from a lot of annoying geometry

Hemisphere Unit Tests

22

—Julia makes unit tests very easy to implement, incredibly helpful if you’re learning the language

Hemisphere Profiling

23

—It was also incredibly helpful to have a profiler built in
to optimize the hemisphere mixing algorithm

—It was even more convenient that this was built
into VS Code as an extension!

Conclusion

24

—It is (mostly) possible to do a full ATLAS analysis using Julia

—There are a wide variety of tools available and they are easy to use for newcomers

—Even a project like synthetic hemispheres which is a bit more niche than a “standard analysis”
is easy to implement with packages

Questions

Backup

Synthetic Hemisphere Results

27

BDT for Cut Optimization

28

—To improve performance from our baseline cuts, we chose to switch to using a boosted
decision tree (BDT) through XGBoost in Julia

—The BDT is currently trained on signal MC and data as background

—Challenge is to ensure that the BDT doesn’t sculpt a spurious signal into our mass distribution
work is still ongoing to understand what variables are safe to feed to the BDT

fastDIPS Variables

29

—These are the track variables that are inputted into the fastDIPS algorithm

