
UnROOT.jl - Status Update & RNTuple
JuliaHEP 2024 @CERN

Jerry Ling (Harvard University), Tamás Gál (ECAP)

What is UnROOT.jl for?

❖ A Julia Package for reading and (soon™) writing .root files

❖ Reading:

➢ TTree, RNTuple, histograms etc.

❖ Writing:

➢ RNTuple

2

https://github.com/JuliaHEP/UnROOT.jl

History

❖ In 2021, we have mostly focused on “reading” TTrees and histograms to

facilitate end-user analysis workflows.

❖ In 2022, improved performance and coverage. “Dogfooding” in our ATLAS

analysis (sending to journal soon).

❖ Since 2022, working on reading RNTuple, already very wide coverage, feed

back into the ROOT team’s R&D process.

❖ Since last JuliaHEP, prototyping RNTuple writing

3

Structure of this talk

❖ What’s special about .root files?

❖ Introduction (or recap) of UnROOT.jl features

❖ Crash course on RNTuple

❖ Status of RNTuple I/O

4

❖ What’s special about .root files?

❖ Introduction (or recap) of UnROOT.jl features ⏳
❖ Crash course on RNTuple ⏳
❖ Status of RNTuple I/O ⏳

5

ROOT and .root files

Two challenges in HEP data:

1. Immense data size (need performance and compression ratio)

2. Complex, hierarchical data model

ROOT C++ framework and .root file were created at CERN to deal with them.

6

TTree -> RNTuple

❖ In short, the complex data structure pushed HEP to invent its own data

format: TTree and RNTuple

❖ They share only a few things in design, with RNTuple posed to replace TTree

completely in the near future

7

Two table-like objects in .root files used for
physics events data

❖ What’s special about .root files? ✅
❖ Introduction (or recap) of UnROOT.jl features

❖ Crash course on RNTuple ⏳
❖ Status of RNTuple I/O ⏳

8

Existing UnROOT.jl features:

❖ Tables.jl-compatible representation of TTrees / RNTuples

9

https://github.com/JuliaHEP/UnROOT.jl

Existing UnROOT.jl features:

❖ Lazy I/O during event iteration of wide table

10

events::LazyTree

https://github.com/JuliaHEP/UnROOT.jl

Existing UnROOT.jl features:

❖ Transparently thread-safe

11

https://github.com/JuliaHEP/UnROOT.jl

Performance techniques for reading

Three most important things for reading in general:

❖ Type stability

❖ Lazy data materialization

❖ Chunked caching

12

Performance #1: type stability

❖ For this to be fast, compiler must be able

to infer the type of `evt.Elec_4vector` and

so on.

❖ Solution: Encode name <-> type

mapping in the type info of `evt`.

13

Performance #2: lazy materialization

❖ Often, the `events` may have O(1000) columns, but users may only access

O(10)

❖ Solution: Delay the reading of column content until something like `evt.Col1`

actually happens.

14

Performance #3: chunked cache

❖ Both TTree and RNTuple are “columnar”, meaning multiple rows of the same

column are stored together on disk.

❖ When reading “1 row”, you are forced to do the work for many (1k-100k) rows.

❖ Solution: cache the chunk and its range,

per column.

15Chunk spans multiple rows

Performance #3.5: chunked cache with thread-safety

❖ To make the chunk caches thread-safe, you need a cache per column, per

thread.

❖ Initially, it was done with `buffers[threadid()]`, then I asked about it in Julia

slack, long discussion ensued.

❖ Result:

16

Performance #3.5: chunked cache with thread-safety

❖ New strategy:

❖ Now it is safe even when a task migrates to the thread where another task is

running.

17

TTree reading performance:

‡: Exact ranking depends on the workload

cern.ch/go/vhR6 18

http://cern.ch/go/vhR6

❖ What’s special about .root files? ✅
❖ Introduction (or recap) of UnROOT.jl features ✅
❖ Crash course on RNTuple

❖ Status of RNTuple I/O ⏳

19

What is RNTuple

❖ One drawback of TTree is the lack of “specification” – which created a messy

compatibility landscape:

20

What is RNTuple

❖ In RNTuple, we can expect much more uniform compatibility thanks to

specification-oriented design:

21

Some C++ specific
things still exist…

What is RNTuple

❖ It is helpful to draw contrasts between TTree and RNTuple in order to explain

why RNTuple’s design is more “principled”

22

23

In TTree, every column the

user sees correspond to one

group of storage units.

If `col` is complex: squeeze

heterogeneous data into the

same storage unit -> bad

compression.

❖ RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):

24

In RNTuple, every column user

sees can be composition of

fields/columns.

This allows better compression

efficiency and uniform schema

composition rule.

❖ What’s special about .root files? ✅
❖ Introduction (or recap) of UnROOT.jl features ✅
❖ Crash course on RNTuple ✅
❖ Status and update on RNTuple I/O

25

RNTuple reading strategy:

Reading of the columnar format can be broken down into 3 steps:

1. Parse metadata for type schema

2. Process referential metadata (i.e. where are the storage units)

3. Compose Julia types and attach storage units accordingly.

26

RNTuple reading strategy: type schema

❖ Through extensive use of multiple-dispatch, manipulation in type space is

more modular and less error-prone when containers nest each other.

27

In real-world application, we do push the schema type system very far:

28

RNTuple reading wish list 🚧
❖ One minor inconvenience for reading is we’re not fully efficient when the user

only wants to access a sub-field of a structure.

❖ For example, if the user only uses `evt.Ak4jets.pt`, in principle, we only need

to touch two columns: one for offset, one for content.

❖ But our current “lazy” strategy stops when user access `evt.Ak4jets`, we end

up reading everything under `Ak4jets` field.

29

RNTuple reading wish list 🚧
❖ The current implementation (which uses StructArrays.jl and ArraysOfArrays.jl)

doesn’t give us enough control over the whole access.

❖ One possible approach is to take more control over the whole `LazyTree`, for

example, by using AwkwardArray.jl

❖ This can help us even more in “Writing”, see later slides.

30

https://github.com/JuliaHEP/AwkwardArray.jl

RNTuple is still evolving:

❖ Before delve into writing, note that RNTuple is still having breaking changes

from time to time.

❖ A handful of breaking changes (adding/removing fields from data structure,

adding new checksum, changing positive and negative values etc.)

❖ Expected to freeze around CHEP 2024 (in one month)

Takeaway: do not prematurely optimize our implementation.

31

https://github.com/JuliaHEP/UnROOT.jl/pull/347

RNTuple writing strategy:

❖ Writing is very different from reading, in fact, almost no code can be reused.

❖ Information flow during reading:

32

RNTuple writing strategy:

❖ For writing, you need to alternate between committing storage units to disk

and update referential metadata:

33

RNTuple writing strategy:

❖ Often, data are too big to write in one go, so relocation of the metadata

blocks are needed:

34

Development plan:

Breakdown the development into three phases, with incrementing level of

completeness and automation:

1. Proof-of-concept: use as much hard-coded byte blobs as needed (#343 in

June) ✅
2. Minimally viable for end-user: common types for analysis, large table,

compression etc. (#349 now)

3. “Advanced” features: Complex types, efficient appending, streaming etc.

35

https://github.com/JuliaHEP/UnROOT.jl/issues/336
https://github.com/JuliaHEP/UnROOT.jl/pull/343
https://github.com/JuliaHEP/UnROOT.jl/pull/349

RNTuple writing: #0

❖ Although RNTuple has specification, not everything in a .root file is. So the

0th step is to open a hex editor and understand every single byte:

36

RNTuple writing: #1

❖ After understanding every single byte, create stubs for things.

❖ For file metadata parts without specification, reuse byte blobs.

❖ For the parts that have specification, write Julia objects and I/O to re-create

them.

❖ Using a dynamic language helped immensely during this iterative

development.

37

RNTuple writing: #2

❖ Using Observables.jl-like structure to keep a record on metadata object,

when they get updated, flush updated bytes to disk.

38

RNTuple writing: Current status

39

RNTuple writing road ahead 🚧
The biggest long-term challenge is how to have near-100% coverage of all

possible types users want to serialize, two related challenges:

1. Generate (arbitrarily) nested fields and columns schema data

2. Re-organize Julia objects into primitive storage units (offset, content etc.)

A systematic approach can be helpful.

40

RNTuple writing road ahead 🚧
AwkwardArray.jl is one of such systematic approaches.

Given a table-like data structure, it will be able to output:

❖ A type schema / tree that is compatible with RNTuple (with simple translation

for the base unit)

❖ An in-memory layout with appropriate basic columns such as “offset” and

“content” already transformed.

41

Summary

❖ UnROOT.jl is feature-rich and fast for common end-user analysis applications

❖ Following RNTuple development and will be ready when the switch happens.

❖ RNTuple writing is steadily maturing, and integration with AwkwardArray.jl

can be an exciting solution towards feature-completeness. See Ianna‘s talk

at 11am!

Hackathon: finish #349, learn RNTuple and reverse engineering ROOT logics!

42

https://indico.cern.ch/event/1410341/contributions/6135605/
https://github.com/JuliaHEP/UnROOT.jl/pull/349

Backup

43

RNTuple and reading it from Julia

❖ RNTuple is the upcoming, brand new format for storing data beginning 2025.

❖ The design is similar to some industry formats emerged in the last decade:

44Terminology translation between columnar formats

RNTuple reading: type schema

❖ Through extensive use of multiple-dispatch, manipulation in type-space is

more modular and less error-prone when containers nest each other.

❖ For example, consider a column with eltype “vector of structs”.

❖ This involve two different containers:

➢ Vector

➢ Struct

45

RNTuple reading: type schema

❖ The “vector” by itself is encoded using “content and offset” approach:

46

“Content and offset” for jagged vector, similar to
ArraysOfArrays.jl

RNTuple reading: type schema

❖ The “struct” by itself is encoded using “struct of arrays” approach:

47

Struct of arrays encoding, similar to StructArrays.jl

RNTuple reading: type schema

❖ The power of the design and our strategy is that they can compose freely:

48

Schema of a column with eltype “vector of structs”

