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What is UnROOT.jl for?

❖ A Julia Package for reading and (soon™) writing .root files

❖ Reading:

➢ TTree, RNTuple, histograms etc.

❖ Writing:

➢ RNTuple
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https://github.com/JuliaHEP/UnROOT.jl


History

❖ In 2021, we have mostly focused on “reading” TTrees and histograms to 

facilitate end-user analysis workflows.

❖ In 2022, improved performance and coverage. “Dogfooding” in our ATLAS 

analysis (sending to journal soon).

❖ Since 2022, working on reading RNTuple, already very wide coverage, feed 

back into the ROOT team’s R&D process.

❖ Since last JuliaHEP, prototyping RNTuple writing
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Structure of this talk

❖ What’s special about  .root files?

❖ Introduction (or recap) of UnROOT.jl features

❖ Crash course on RNTuple

❖ Status of RNTuple I/O
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❖ What’s special about  .root files?

❖ Introduction (or recap) of UnROOT.jl features ⏳
❖ Crash course on RNTuple ⏳
❖ Status of RNTuple I/O ⏳
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ROOT and .root files

Two challenges in HEP data:

1. Immense data size (need performance and compression ratio)

2. Complex, hierarchical data model

ROOT C++ framework and .root file were created at CERN to deal with them.
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TTree -> RNTuple

❖ In short, the complex data structure pushed HEP to invent its own data 

format: TTree and RNTuple

❖ They share only a few things in design, with RNTuple posed to replace TTree 

completely in the near future
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Two table-like objects in .root files used for 
physics events data



❖ What’s special about  .root files? ✅
❖ Introduction (or recap) of UnROOT.jl features

❖ Crash course on RNTuple ⏳
❖ Status of RNTuple I/O ⏳
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Existing UnROOT.jl features:

❖ Tables.jl-compatible representation of TTrees / RNTuples
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https://github.com/JuliaHEP/UnROOT.jl


Existing UnROOT.jl features:

❖ Lazy I/O during event iteration of wide table
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events::LazyTree

https://github.com/JuliaHEP/UnROOT.jl


Existing UnROOT.jl features:

❖ Transparently thread-safe
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https://github.com/JuliaHEP/UnROOT.jl


Performance techniques for reading

Three most important things for reading in general:

❖ Type stability

❖ Lazy data materialization

❖ Chunked caching
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Performance #1: type stability

❖ For this to be fast, compiler must be able 

to infer the type of `evt.Elec_4vector` and 

so on.

❖ Solution: Encode name <-> type 

mapping in the type info of `evt`.
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Performance #2: lazy materialization

❖ Often, the `events` may have O(1000) columns, but users may only access 

O(10)

❖ Solution: Delay the reading of column content until something like `evt.Col1` 

actually happens.
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Performance #3: chunked cache

❖ Both TTree and RNTuple are “columnar”, meaning multiple rows of the same 

column are stored together on disk.

❖ When reading “1 row”, you are forced to do the work for many (1k-100k) rows.

❖ Solution: cache the chunk and its range,

per column.

15Chunk spans multiple rows



Performance #3.5: chunked cache with thread-safety

❖ To make the chunk caches thread-safe, you need a cache per column, per 

thread.

❖ Initially, it was done with `buffers[threadid()]`, then I asked about it in Julia 

slack, long discussion ensued.

❖ Result:
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Performance #3.5: chunked cache with thread-safety

❖ New strategy:

❖ Now it is safe even when a task migrates to the thread where another task is 

running.
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TTree reading performance:

‡: Exact ranking depends on the workload

cern.ch/go/vhR6 18

http://cern.ch/go/vhR6


❖ What’s special about  .root files? ✅
❖ Introduction (or recap) of UnROOT.jl features ✅
❖ Crash course on RNTuple

❖ Status of RNTuple I/O ⏳
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What is RNTuple

❖ One drawback of TTree is the lack of “specification” – which created a messy 

compatibility landscape:
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What is RNTuple

❖ In RNTuple, we can expect much more uniform compatibility thanks to 

specification-oriented design:
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Some C++ specific 
things still exist…



What is RNTuple

❖ It is helpful to draw contrasts between TTree and RNTuple in order to explain 

why RNTuple’s design is more “principled”
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In TTree, every column the 

user sees correspond to one 

group of storage units.

If `col` is complex: squeeze 

heterogeneous data into the 

same storage unit -> bad 

compression.



❖ RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):
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In RNTuple, every column user 

sees can be composition of 

fields/columns.

This allows better compression 

efficiency and uniform schema 

composition rule.



❖ What’s special about  .root files? ✅
❖ Introduction (or recap) of UnROOT.jl features ✅
❖ Crash course on RNTuple ✅
❖ Status and update on RNTuple I/O
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RNTuple reading strategy:

Reading of the columnar format can be broken down into 3 steps:

1. Parse metadata for type schema

2. Process referential metadata (i.e. where are the storage units)

3. Compose Julia types and attach storage units accordingly.
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RNTuple reading strategy: type schema

❖ Through extensive use of multiple-dispatch, manipulation in type space is 

more modular and less error-prone when containers nest each other.
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In real-world application, we do push the schema type system very far:
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RNTuple reading wish list 🚧
❖ One minor inconvenience for reading is we’re not fully efficient when the user 

only wants to access a sub-field of a structure.

❖ For example, if the user only uses `evt.Ak4jets.pt`, in principle, we only need 

to touch two columns: one for offset, one for content.

❖ But our current “lazy” strategy stops when user access `evt.Ak4jets`, we end 

up reading everything under `Ak4jets` field.
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RNTuple reading wish list 🚧
❖ The current implementation (which uses StructArrays.jl and ArraysOfArrays.jl) 

doesn’t give us enough control over the whole access.

❖ One possible approach is to take more control over the whole `LazyTree`, for 

example, by using AwkwardArray.jl 

❖ This can help us even more in “Writing”, see later slides.
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https://github.com/JuliaHEP/AwkwardArray.jl


RNTuple is still evolving:

❖ Before delve into writing, note that RNTuple is still having breaking changes 

from time to time.

❖ A handful of breaking changes (adding/removing fields from data structure, 

adding new checksum, changing positive and negative values etc.)

❖ Expected to freeze around CHEP 2024 (in one month)

Takeaway: do not prematurely optimize our implementation.

31

https://github.com/JuliaHEP/UnROOT.jl/pull/347


RNTuple writing strategy:

❖ Writing is very different from reading, in fact, almost no code can be reused.

❖ Information flow during reading:
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RNTuple writing strategy:

❖ For writing, you need to alternate between committing storage units to disk 

and update referential metadata:
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RNTuple writing strategy:

❖ Often, data are too big to write in one go, so relocation of the metadata 

blocks are needed:
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Development plan:

Breakdown the development into three phases, with incrementing level of 

completeness and automation:

1. Proof-of-concept: use as much hard-coded byte blobs as needed (#343 in 

June) ✅
2. Minimally viable for end-user: common types for analysis, large table, 

compression etc. (#349 now)

3. “Advanced” features: Complex types, efficient appending, streaming etc.
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https://github.com/JuliaHEP/UnROOT.jl/issues/336
https://github.com/JuliaHEP/UnROOT.jl/pull/343
https://github.com/JuliaHEP/UnROOT.jl/pull/349


RNTuple writing: #0

❖ Although RNTuple has specification, not everything in a .root file is. So the 

0th step is to open a hex editor and understand every single byte:
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RNTuple writing: #1

❖ After understanding every single byte, create stubs for things.

❖ For file metadata parts without specification, reuse byte blobs.

❖ For the parts that have specification, write Julia objects and I/O to re-create 

them.

❖ Using a dynamic language helped immensely during this iterative 

development.
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RNTuple writing: #2

❖ Using Observables.jl-like structure to keep a record on metadata object, 

when they get updated, flush updated bytes to disk.
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RNTuple writing: Current status
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RNTuple writing road ahead 🚧
The biggest long-term challenge is how to have near-100% coverage of all 

possible types users want to serialize, two related challenges:

1. Generate (arbitrarily) nested fields and columns schema data

2. Re-organize Julia objects into primitive storage units (offset, content etc.)

A systematic approach can be helpful.
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RNTuple writing road ahead 🚧
AwkwardArray.jl is one of such systematic approaches.

Given a table-like data structure, it will be able to output:

❖ A type schema / tree that is compatible with RNTuple (with simple translation 

for the base unit)

❖ An in-memory layout with appropriate basic columns such as “offset” and 

“content” already transformed.
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Summary

❖ UnROOT.jl is feature-rich and fast for common end-user analysis applications

❖ Following RNTuple development and will be ready when the switch happens.

❖ RNTuple writing is steadily maturing, and integration with AwkwardArray.jl 

can be an exciting solution towards feature-completeness. See Ianna‘s talk 

at 11am!

Hackathon: finish #349, learn RNTuple and reverse engineering ROOT logics!
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https://indico.cern.ch/event/1410341/contributions/6135605/
https://github.com/JuliaHEP/UnROOT.jl/pull/349


Backup
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RNTuple and reading it from Julia

❖ RNTuple is the upcoming, brand new format for storing data beginning 2025.

❖ The design is similar to some industry formats emerged in the last decade:

44Terminology translation between columnar formats



RNTuple reading: type schema

❖ Through extensive use of multiple-dispatch, manipulation in type-space is 

more modular and less error-prone when containers nest each other.

❖ For example, consider a column with eltype “vector of structs”.

❖ This involve two different containers:

➢ Vector

➢ Struct
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RNTuple reading: type schema

❖ The “vector” by itself is encoded using “content and offset” approach:
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“Content and offset” for jagged vector, similar to 
ArraysOfArrays.jl



RNTuple reading: type schema

❖ The “struct” by itself is encoded using “struct of arrays” approach:
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Struct of arrays encoding, similar to StructArrays.jl



RNTuple reading: type schema

❖ The power of the design and our strategy is that they can compose freely:
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Schema of a column with eltype “vector of structs”


