¢

1S

UnROOQOT.jl - Status Update & RNTuple

JuliaHEP 2024 @CERN

Jerry Ling (Harvard University), Tamas Gal (ECAP)

What is UnROOT.|l for?

% A Julia Package for reading and (soon™) writing .root files
% Reading:

> TTree, RNTuple, histograms etc.
s Writing:

> RNTuple

Contributors 13
Languages

l‘ e A \ A
Can’ .: , > W
- @& : g :

https://github.com/JuliaHEP/UnROOT.jl

History

% In 2021, we have mostly focused on “reading” TTrees and histograms to
facilitate end-user analysis workflows.

% In 2022, improved performance and coverage. “Dogfooding” in our ATLAS
analysis (sending to journal soon).

% Since 2022, working on reading RNTuple, already very wide coverage, feed
back into the ROOT team’s R&D process.

% Since last JuliaHEP, prototyping RNTuple writing

Structure of this talk

% What’s special about .root files?
% Introduction (or recap) of UnROOT.jl features
% Crash course on RNTuple

% Status of RNTuple I/0

What’s special about .root files?

Introduction (or recap) of UnROOT.jl features %
Crash course on RNTuple %

Status of RNTuple /0 %

ROOT and .root files

Two challenges in HEP data:

1. Immense data size (need performance and compression ratio)

2. Complex, hierarchical data model

ROOT C++ framework and .root file were created at CERN to deal with them.

/ ROOT

Data Analysis Framework

TTree -> RNTuple

% In short, the complex data structure pushed HEP to invent its own data

format: TTree and RNTuple
% They share only a few things in design, with RNTuple posed to replace TTree

completely oot sile

~2000-2025 ~2025-future

Two table-like objects in .root files used for
physics events data

What’s special about .root files?
Introduction (or recap) of UnROOQT.|jl features

Crash course on RNTuple %

Status of RNTuple I/0 %

Existing UnROOT.|l features:

% Tables.jl-compatible representation of TTrees / RNTuples

julia> mytree LazyTree(f, "Events", ["Electron_dxy", "nMuon", r"Muon_(pt|eta)$"])
Row | Electron_dxy nMuon Muon_pt Muon_eta
| SubArray{Float3 UInt32 SubArray{Float3 SubArray{Float3
1 0.00037: 0 [] []
2 [1£9°9, 15531 [6.53, 0.229]
0 [] []
[-0.00157] 0 [] []

[] (]

[-1.13, 1.98]

0.00617] 0 [] []

|

|

|

|

| [] 0 (] []
| T") :’ N

|

|

|

992 rows omitted

https://github.com/JuliaHEP/UnROOT.jl

Existing UnROOT.|l features:

% Lazy I/O during event iteration of wide table

events::LazyTree

evt = events[1]

evt.Elec_qualities

10

https://github.com/JuliaHEP/UnROOT.jl

Existing UnROOT.|l features:

% Transparently thread-safe

evt events @threads evt events
evt.Elec_4vector e evt.Elec_4vector

e.pt > lQ.O e.pt > 10.0
push! (hist_elec_eta, e.eta) atomic_push! (hist_elec_eta, e.eta)

11

https://github.com/JuliaHEP/UnROOT.jl

Performance techniques for reading

Three most important things for reading in general:

% Type stability
% Lazy data materialization

% Chunked caching

12

Performance #1: type stability

% For this to be fast, compiler must be able evt in events
) . . = evt.Elec_4vector
to infer the type of ‘evt.Elec_4vector and e.pt > 10.0

push! (hist_elec_eta, e.eta)

SO OnN.

% Solution: Encode name <-> type

mapping in the type info of evt.

13

Performance #2: lazy materialization

% Often, the ‘events’ may have O(1000) columns, but users may only access
O(10)
% Solution: Delay the reading of column content until something like ‘evt.Col1

actually happens.

evt = events[1]

evt.Elec_qualities

14

Performance #3: chunked cache

s Both TTree and RNTuple are “columnar”, meaning multiple rows of the same
column are stored together on disk.
% When reading “1 row”, you are forced to do the work for many (1k-100Kk) rows.

% Solution: cache the chunk and its range, coll col2 col3

c0|umv\’s

per column. nth chunk

LTI

Chunk spans multiple rows

Performance #3.5: chunked cache with thread-safety

% To make the chunk caches thread-safe, you need a cache per column, per
thread.

% Initially, it was done with "buffers[threadid()]’, then | asked about it in Julia
slack, long discussion ensued.

< Result:

PSA: Thread-local state is no longer
recommended

06 July 2023 | Mason Protter, Valentin Churavy, lan Butterworth, and many helpful contributors

16

Performance #3.5: chunked cache with thread-safety

Reentrant
% New strategy: ’\

col locks =[&, &, &, &, &]

: _ 1. acquire Tosk @
1-to-1 thread 3

; 2. operate

VA

col_buffers = [/, ¥, ¥, ¥, V]

% Now it is safe even when a task migrates to the thread where another task is

running.

17

20

10

30

o I
40. PyROOT . :
— single-thread | 4-threads
|
|
uproot |
ROOT |
RDataFrame |
|
|
L |
|
|
I
|
- | ROOT .
| ataFrame gy al§<
- e julia
|
I

ree reading performance:

Runtime?*(s)

¥: Exact ranking depends on the workload

cern.ch/go/vhR6

18

http://cern.ch/go/vhR6

What’s special about .root files?
Introduction (or recap) of UnROQT.|l features
Crash course on RNTuple

Status of RNTuple /0 %

19

What is RNTuple

% One drawback of TTree is the lack of “specification” — which created a messy

compatibility landscape:

20

What is RNTuple

% In RNTuple, we can expect much more uniform compatibility thanks to

specification-oriented design:

Some C++ specific
RN Tuple things still exist...

3rd Partc/
Read & Write

21

What is RNTuple

% ltis helpful to draw contrasts between TTree and RNTuple in order to explain

why RNTuple’s design is more “principled”

RA/'Tu(ale

3rd part(/
Read & Write

22

User sees:

colt col2

Qoluwm’s
n-th chunk

[

L]

In TTree, every column the
user sees correspond to one

group of storage units.

If ‘col’ is complex: squeeze
heterogeneous data into the
same storage unit -> bad

compression.

23

7/

User sees:

'Tv./pe_ schema:

Reldt Belda Beld

_______________ ::/_"""I,'-T\‘""—"\y“;::\;"_""_

VN Beldd felds

coll colz cold :

1 | | y \y

: : ! ch‘(col5
R S A S

[| L

| 1 []

| |

% RNTuple’s design is more similar to Apache Parquet/Arrow(Feather):

In RNTuple, every column user
sees can be composition of

fields/columns.

This allows better compression
efficiency and uniform schema

composition rule.

24

What’s special about .root files?
Introduction (or recap) of UnROQT.|l features
Crash course on RNTuple

Status and update on RNTuple 1/0

25

RNTuple reading strategy:

Reading of the columnar format can be broken down into 3 steps:

1.
2.
3.

Parse metadata for type schema

Process referential metadata (i.e. where are the storage units)

Compose Julia types and attach storage units accordingly.

'oa/‘te_s n a Ble

header

I

il =

|

1. t‘e_ad schema

T

e Pe_ad storage units

2. read metadata

26

RNTuple reading strategy: type schema

% Through extensive use of multiple-dispatch, manipulation in type space is

more modular and less error-prone when containers nest each other.

UnionField{S,T}
switch_col::S StructField{N, T}
content_cols::T content_cols::T

isvoid(::Type{<:UnionField}) = false isvoid(::Type{StructField{N,T}}) {N,T}

isvoid(T)
_parse_field(field_id, field records, column_records, alias
switch_col = search col type(field_id, column_records, alias_co
element_ids = findall(field_records) field parse field(field_id, field records, column_records,
field.parent_field _id == field_id element_ids = findall(field_records) field
field.parent field id == field id

27

In real-world application, we do push the schema type system very far:

L("AntiKt4TruthwzZJetsAux:"

) =

Struct

- :m=

Vector

|- :offset

L— :con
:pt = Vector

- :offse

L- :cc

.eta = Vector

:phl = Vector

- :offset

|

|
=
|

|
-
|

|
- :con
|

|

|

|
-
|

|
L

.constitu

ncent =

> Leaf{UnROOT. Index64}

.content

L- :content

entLinks -

{UnROOT.Index64}(col=165)
ﬁ,f‘r1t1kj¥r(C01 166)

UnROOT.Index64}(col=159)
{Float32}(col=160)

(col=161)
Leaf{Float32}(col=162)
- Vector
- :offset = Leaf{UnROOT
L- :content =

.Index64} (col=171)
Vector

F‘IOff@e;,

L- :content

{UnROOT.Index64}(col=163)

> Leaf{Float32}(col=164)

Vector

- :offset Leaf{UnROOT. Indexe

> Vector

}— roffset

54} (col=167)

> Leaf {UnROOT.
> Struct
- Symbol(":_0")

RNTuple reading wish list ##

% One minor inconvenience for reading is we’re not fully efficient when the user
only wants to access a sub-field of a structure.

% For example, if the user only uses "evt.Ak4jets.pt, in principle, we only need
to touch two columns: one for offset, one for content.

% But our current “lazy” strategy stops when user access "evt.Ak4jets’, we end

up reading everything under "Ak4jets’ field.

29

RNTuple reading wish list ##

7/

% The current implementation (which uses StructArrays.jl and ArraysOfArrays.jl)
doesn’t give us enough control over the whole access.

% One possible approach is to take more control over the whole ‘LazyTree’, for

example, by using AwkwardArray.jl Awli.i‘;ard
Array;

% This can help us even more in “Writing”, see later slides.

30

https://github.com/JuliaHEP/AwkwardArray.jl

RNTuple is still evolving:

% Before delve into writing, note that RNTuple is still having breaking changes

from time to time.

% A handful of breaking changes (adding/removing fields from data structure,
adding new checksum, changing positive and negative values etc.)

% Expected to freeze around CHEP 2024 (in one month)

Takeaway: do not prematurely optimize our implementation.

31

https://github.com/JuliaHEP/UnROOT.jl/pull/347

RNTuple writing strategy:

% Writing is very different from reading, in fact, almost no code can be reused.

% Information flow during reading:
‘o'v./te,s in o Bile

==L DAL
|

1. read schema 3. read storage units

)

=N

S i i 0

2. read metadata

32

RNTuple writing strategy:

s For writing, you need to alternate between committing storage units to disk

and update referential metadata:

‘ot/te_s n o Ble

J— S _

!

: header , footer
I

" |

/ ™

1. write schema . write metadata stub

3. commit data to disk
q, upda‘te reference
33

RNTuple writing strategy:

% Often, data are too big to write in one go, so relocation of the metadata

blocks are needed:

'.-.at/te_s n a file
(}: o)
: header | : IS : footer :
\‘ Re——— - J L L]. II] BRI . o e m = - /l
3. commit data to disk /\
4. wore doata to disk

5. relocate & update
metadata
34

Development plan:

Breakdown the development into three phases, with incrementing level of

completeness and automation:

1. Proof-of-concept: use as much hard-coded byte blobs as needed (#343 in

June)

2. Minimally viable for end-user: common types for analysis, large table,
compression etc. (#349 now)

3. “Advanced” features: Complex types, efficient appending, streaming etc.

35

https://github.com/JuliaHEP/UnROOT.jl/issues/336
https://github.com/JuliaHEP/UnROOT.jl/pull/343
https://github.com/JuliaHEP/UnROOT.jl/pull/349

RNTuple writing: #0

% Although RNTuple has specification, not everything in a .root file is. So the

Oth step is to open a hex editor and understand every single byte:

. <HEN

HEIREE

% X

oo oo

3

<
L)
=
L3
9
<
S
L3
)
<
=
L)
)
<
=
L3
<
L)
oy
b3
9
<
Y
L)

o000 B0 000

RNTuple writing: #1

% After understanding every single byte, create stubs for things.
% For file metadata parts without specification, reuse byte blobs.
% For the parts that have specification, write Julia objects and I/O to re-create

them.

% Using a dynamic language helped immensely during this iterative

development.

37

RNTuple writing: #2

% Using Observables.jl-like structure to keep a record on metadata object,

when they get updated, flush updated bytes to disk.

!:t/te_s in a Ble

Y M 2 Tl B TR s T B F‘ N
.' AL |
| header 1 e, : footer |
\ i | | l
N~ . L | (L | Bl _ BRI /

= \

3. commit data to disk

4. more data to disk
5. re_loca‘te_ L upda‘te

metadata
38

RNTuple writing: Current status

1
2
3
4
O
6
7
8
9
il

data = [5,
newtable =
ol
x2
x3
al

7, 8, 9, 10, 11, 12, 13,

-

Float64. (data),
Float32.(data),
Int32. (data),
UInt16. (data),

I amnnin—~om

)
UnROOT.write_rntuple(open("/tmp/a.root", "w"
LazyTree("/tmp/a.root", "myntuple')

x2 x3 yl

newtable; rntuple_name="myntuple')

39

RNTuple writing road ahead ##

The biggest long-term challenge is how to have near-100% coverage of all

possible types users want to serialize, two related challenges:

1. Generate (arbitrarily) nested fields and columns schema data

2. Re-organize Julia objects into primitive storage units (offset, content etc.)

A systematic approach can be helpful.

40

RNTuple writing road ahead ##

AwkwardArray.jl is one of such systematic approaches.
Given a table-like data structure, it will be able to output:

% Atype schema / tree that is compatible with RNTuple (with simple translation
for the base unit)
% An in-memory layout with appropriate basic columns such as “offset” and

“content” already transformed.

41

Summary

% UnROOQOT.jl is feature-rich and fast for common end-user analysis applications
% Following RNTuple development and will be ready when the switch happens.
% RNTuple writing is steadily maturing, and integration with AwkwardArray.|l

can be an exciting solution towards feature-completeness. See lanna’s talk

at 11am!

Hackathon: finish #349, learn RN Tuple and reverse engineering ROOT logics!

42

https://indico.cern.ch/event/1410341/contributions/6135605/
https://github.com/JuliaHEP/UnROOT.jl/pull/349

Backup

RNTuple and reading it from Julia

% RNTuple is the upcoming, brand new format for storing data beginning 2025.

% The design is similar to some industry formats emerged in the last decade:

RNTuple Parquet Arrow /Feather

field column field
column - array
cluster row group row group

page list column chunk record batch
page page buffer

Terminology translation between columnar formats

RNTuple reading: type schema

% Through extensive use of multiple-dispatch, manipulation in type-space is
more modular and less error-prone when containers nest each other.
% For example, consider a column with eltype “vector of structs”.

< This involve two different containers:

> \ector

> Struct

45

RNTuple reading: type schema

% The “vector” by itself is encoded using “content and offset” approach:

- - - - - —— -

User sees: ary = [[12 1’-1] [1, [17, 19, 21]1]

What's actually stored:

content = [12, 14, 17, 19, 21]
offset = [0, 2, 2, 5]

ary[0] = content[0:2] = [12, 14]

“Content and offset” for jagged vector, similar to
ArraysOfArrays.jl

RNTuple reading: type schema

% The “struct” by itself is encoded using “struct of arrays” approach:

user: vec_lv[1l] - LV{pt: 130, eta: 0.4, phi: 2.1, mass: 500}

‘ vec_lv /l\

! pt: '[130 '180 1u0]J
| |

‘eta:[04|12 oeﬂ
I

[phl:[21 1.3, 02])
[}

I |
Elass.: [500; 200, 130]]

| E——

Struct of arrays encoding, similar to StructArrays.jl

RNTuple reading: type schema

% The power of the design and our strategy is that they can compose freely:

offset

6 vec_1lvs y

pt content

eta content

— phi content

- mass content

Schema of a column with eltype “vector of structs”

