

How to analyze a full experiment in Julia

Florian Henkes – Technical University of Munich Oliver Schulz – Max-Planck Institute for Physics

What happens in this talk

- 1. Introduction to LEGEND and 0νββ-decay physics
- 2. What is the JuLeAna Software Stack?
- 3. Features and highlights in the application to LEGEND data
- 4. Summary & Outlook

1. Introduction to LEGEND and 0νββ-decay

physics

- 2. What is the JuLeAna Software Stack?
- 3. Features and highlights in the application to LEGEND data
- 4. Summary & Outlook

Neutrinoless double beta decay

- 2νββ: simultaneous decay of two neutrons in a nucleus (observed e.g. in ⁷⁶Ge)
- 0νββ: process in which two particles are created without balancing anti-particles

 \rightarrow Lepton-Number Violation by 2 orders

 \rightarrow Could possibly explain matter-antimatter asymmetry in the early universe

The signature

- 2νββ: continuous energy spectrum
- 0νββ: peak at the Q-value
- For ${}^{76}Ge$: Q = 2.039 MeV

The challenge

- 2νββ: continuous energy spectrum
- 0νββ: peak at the Q-value
- For ${}^{76}Ge:Q_{BB} = 2.039$ MeV

Key requirements:

- Large exposure (tonne-scale)
- Excellent energy resolution (~ 1% $@$ $Q_{\beta\beta}$)
- Low background (< 1 cts/year/t/ROI)

"The collaboration aims to develop a **phased,⁷⁶Ge-based** double-beta decay experimental program with discovery potential at a **half-life beyond 10²⁸yr**, using existing resources as appropriate to expedite physics results."

LEGEND-200

- **200kg** of enrGe (x 5yr), in *GERDA cryostat*
- Physics data taking since March 2023
- B ~ **2** ⋅ **10-4** cts / (keV ⋅ kg ⋅ yr) → 1/2 0 > **10²⁷ yr LEGEND-1000**
- **1t** of ^{enr}Ge (x 10yr), pending funding
- B < **10⁻⁴⁵ cts / (keV** ⋅ kg ⋅ yr) $\Rightarrow T_{1/2}^{0\nu} >$ **10²⁸ yr**
- Fully cover $m_{\beta\beta}$ inverted ordering region

The **EGEND** Experiment

HPGe readout electronics

Larger mass (inverted coaxial) **HPGe detectors** with up to 4 kg

Liquid Argon instrumentation: inner & outer fiber barrels with silicon photomultiplier (SiPM) readout at top & bottom

Source funnels for 228Th calibration sources

Detector mount: underground copper, optically active PEN plates and radiopure PEI

HPGe Detectors

- **Detector = source** of ββ decay events
- **Isotope enrichment** from 7.7% to > 90 % possible
- Very good **energy resolution of 0.1%** (FWHM) at 2039 keV (Qββ of 76Ge)
- High **density** & high **detection efficiency**

60

 \mathbf{a} 20

 10

1. Introduction to LEGEND and 0νββ-decay

physics

- **2. What is the JuLeAna Software Stack?**
- 3. Features and highlights in the application to LEGEND data
- 4. Summary & Outlook

1. Introduction to LEGEND and 0νββ-decay

physics

- 2. What is the JuLeAna Software Stack?
- **3. Features and highlights in the application to LEGEND data**
- 4. Summary & Outlook

LEGEND Data

Digital Signal Processing

● First step in analysis chain → **DSP**

- o *Signal height* contains energy information
- o *Signal derivative* ("current") contains Pulse Shape information
- o *Time points* contain drift information

- Filter and stats algorithm definitions
- Easy-to-extent API
- Filter optimization routine and DSP block definitions custom to LEGEND
- (Almost) fully runnable on GPUs

Quality Cuts

- Quality cuts $=$ Important step to identify non-physical events
- ML based quality cuts using Affinity Propagator

- *So far:* training process still in python
- Evaluation happens in Julia by exporting the models
- Julia implementation currently under active development

- *Energy Calibration:* Linear fit of peak positions against literature values
- *Peak FWHMs* to extrapolate resolutions at Q_{BB}

 $\overline{3}$ FWHM (keV) \overline{z} Best Fit $(p = 0.03)$ $\mathbf{1}$ Data Data not used for fit Q_{on} : 2.15 ± 0.02 keV Residuals (o) Ω 3 Ω -3 500 1000 1500 2000 2500 3000 Energy (keV)

[LegendSpecFit.jl](https://github.com/legend-exp/LegendSpecFits.jl)

[RadiationSpectra.jl](https://github.com/JuliaPhysics/RadiationSpectra.jl)

- Auto calibration routines based on combination of *peak search* and *peak ratio matching*
- For FWHM and calibration, custom χ^2 -fitter with generic *PolynominamlFuncs* and uncertainty handling via *Measurements.jl*

Pulse Shape Discrimination

- **Localized** → *Single-Site Event (SSE)*
- **A/E always similar**

Signal-Like event Gamma background Gamma background Surface α

- Multiple Compton scatterings, pair production, …
- → *Multi-Site Event (MSE)*
- **A/E smaller than signal-like**

- SSE, but short drift-time in large weighting potential but short drifttime in large weighting potential
- **A/E larger than signal-like**

Double Escape Peak (DEP) as proxy for Single Site Events (SSE)

[RadiationDetectorDSP.jl](https://github.com/JuliaPhysics/RadiationDetectorDSP.jl)

A/E Cut

Event Building

Can scale cluster up and down repeatedly, even from interactive Julia session

Timeout/retry mechanism, atomic file I/O with optional local caching, and more

Best LH5 write performance achieved so far 1.2 TB in 70 seconds

Ran up to 4000 multi-cpu worker processes in parallel

Under development: better distributed progress and performance monitoring

We can add workers on the fly via SLURM, connect to a running Julia session

All performed on MPCDF Munich HPC systems Cobra/Raven/Viper

³¹ [ParallelProcessingTools.jl](https://github.com/oschulz/ParallelProcessingTools.jl)

B

Can scale cluster up and down repeatedly, even from interactive Julia session

Timeout/retry mechanism, atomic file I/O with optional local caching, and more

Best LH5 write performance achieved so far 1.2 TB in 70 seconds

Ran up to 4000 multi-cpu worker processes in parallel

 \mathcal{C}

Under development: better distributed progress and performance monitoring

… and let them take over:

³² [ParallelProcessingTools.jl](https://github.com/oschulz/ParallelProcessingTools.jl)

Altogether → Dataflow

Custom dataflow containing

- Processor based execution of individual runs or detectors
- Configuration via *JSON*
- Debug mode for *interactive* testing
- Can run on HPC, *local* notebook or single server natively
- Custom mini graph computing for dependencies
- *Markdown* based logging infrastructure
- *Pars* read and write with unit and error handling via *Unitful.jl* and "e zac": $\{$ "fit": $\{$ *Measurements.jl* "T1208FEP": { "skew width": {

"val": 0.00127417663243801. "err": 7.26620752178326e-5

 $"u": f$

"unit": "keV", "val": 2616.0045498134514. "err": 0.20960014815095052

1. Introduction to LEGEND and 0νββ-decay

physics

- 2. What is the JuLeAna Software Stack?
- 3. Features and highlights in the application to LEGEND data
- **4. Summary & Outlook**

Summary & Outlook

And of course we have T-shirts

- LEGEND features full Julia based Software Stack which can tackle all tiers
- Promising approach without any dependencies to other languages or tools
- In future \rightarrow Try to release more and more tools and general purpose packages

FNSNF

HOW TO BACKUP

- *Primary* LEGEND software stack in Python, *alternative* in Julia
	- **Validation:** Independent code guards physics results against bugs in primary stack
	- **Experimentation: Primary stack needs stable interface,** alternative can use bleeding-edge technology and change/evolve more freely
	- **Future perspective:** Find out what's possible for LEGEND-1000
- Community-wide and LEGEND-specific open-source packages
- Custom dataflow and management routines for throughput cluster computing

LEGEND Experiment

0νββ Decay Physics

LEGEND Experiment

To enhance performance

Two step process for energy filters:

- 1. Optimize *rise time* on baseline events
- 2. Optimize *flat-top time* by fitting peak shape

- Trapping of charge from the initial charge cloud during drift
- Can be corrected via the correlation of the drift time weighted with the charge

QDrift = Area2 – Area1

ODrift Parameter

Charge Trapping Correction

- Trapping of charge from the initial charge cloud during drift
- Can be corrected via the correlation of the drift time weighted with the charge

QDrift = Area2 – Area1

- $\rightarrow E_{CTC} = E + fct \cdot QDrift$
- \rightarrow Corrected energy optimized by optimizing fct via *PeakHeight/FWHM*

FWHM 2.57 \pm 0.03

 10^{2}

2580

 6.0×10^5

 4.0×10

 2.0×10^{7}

 -2.0×10^{5}

2600

Orift Time

2590

2610

2620

Energy (keV)

Before Correction

2600

2610

Energy (keV) (keV)

2620

Counts $10¹$ Before CTC

2630

2630

FWHM 2.44 \pm 0.03

Before CTC After CTC

- Trapping of charge from the initial charge cloud during drift
- Can be corrected via the correlation of the drift time weighted with the charge

QDrift = Area2 – Area1

- $\rightarrow E_{CTC} = E + fct \cdot QDrift$
- \rightarrow Corrected energy optimized by optimizing fct via *PeakHeight/FWHM*

SiPMs

- Find peak positions mat cross threshold
- Amplitudes of peak positions in filtered waveforms
- Discharges tagged by \mathbf{h} is \mathbf{h} waveform. signal $\mathbf 0$ -50 -100 20 40 100 60 80 120 $\mathbf{0}$ $t(\mu s)$

SiPMs

In *uncalibrated* histogram

- Find peaks "1 p.e." and "2 p.e." peak positions
- Linear calibration

SiPMs

In *uncalibrated* histogram

- Find peaks "1 p.e." and "2 p.e." peak positions
- **Linear calibration**

