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Neutrinoless double beta decay
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2νββ 0νββ 

• 2νββ: simultaneous decay of two neutrons in a nucleus (observed e.g. in 76Ge)
• 0νββ: process in which two particles are created without balancing anti-particles

→ Lepton-Number Violation by 2 orders
→Could possibly explain matter-antimatter asymmetry in the early universe

Single 𝛽-decaydouble 𝛽-decay

BSM physics

ഥ𝜈𝑒ഥ𝜈𝑒

ഥ𝜈𝑒 𝜈𝑒
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• 2νββ: continuous energy spectrum

• 0νββ: peak at the Q-value

• For 76Ge: Q = 2.039 MeV 

Energy of both 
electrons

The signature
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Key requirements:

• Large exposure (tonne-scale)

• Excellent energy resolution (~ 1% @ Qββ)

• Low background (< 1 cts/year/t/ROI)

Energy of both 
electrons

Only ~1 decay 
per ton and year 

• 2νββ: continuous energy spectrum

• 0νββ: peak at the Q-value

• For 76Ge: Q𝛽𝛽 = 2.039 MeV 

The challenge
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The      Experiment

• 200kg of enrGe (x 5yr), in GERDA cryostat
• Physics data taking since March 2023
• B ~ 2 ⋅ 10-4 cts / (keV ⋅ kg ⋅ yr) → 𝑇1/2

0𝜈 > 1027 yr

• 1t of enrGe (x 10yr), pending funding
• B < 10-45 cts / (keV ⋅ kg ⋅ yr) → 𝑇1/2

0𝜈 > 1028 yr
• Fully cover 𝑚𝛽𝛽 inverted ordering region 7

“The collaboration aims to develop a phased,76Ge-based
double-beta decay experimental program with discovery 

potential at a half-life beyond 1028yr, using existing resources as
appropriate to expedite physics results.”

LEGEND-200

LEGEND-1000
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The      Experiment

Liquid Argon 
cryostat

HPGe readout electronics

Larger mass 
(inverted coaxial)

HPGe detectors with up to 
4 kg

Detector mount: 
underground copper, 
optically active PEN 

plates and radiopure PEI

Liquid Argon 
instrumentation: 

inner & outer fiber barrels 
with silicon photomultiplier 

(SiPM) readout at top & 
bottom

Source funnels
for 228Th calibration sources
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The      Experiment

Liquid Argon 
cryostat

𝛄



Majorana (PPC) Gerda (BEGe) LEGEND (ICPC) 

• Detector = source of ββ decay 
events

• Isotope enrichment from 7.7% 
to > 90 % possible

• Very good energy resolution of 
𝓞 0.1% (FWHM) at 2039 keV 
(Qββ of 76Ge)

• High density & high detection 
efficiency

HPGe Detectors



ββ decay signal: 

single-site event 

energy deposition

in a ~1 mm3 volume

Liquid Ar

Pure water

Fibers

𝛃𝛃

PEN

𝜷𝜷

𝜈𝜈

MJD, 
GERDA, 
LEGEND

Background Reduction Strategy
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The Software Stack
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raw

RadiationDetectorSignals.jl

RadiationDetectorSignals.jl

LegendHDF5IO.jl / LegendDataTypes.jl

RadiationDetectorDSP.jl

LegendSpecFit.jl

BAT.jl

RadiationSpectra.jl

dsp hit evtsim

SolidStateDetectors.jl

LegendGeSim.jl

LegendDataManagement.jl

LegendVisu.jlLegendDSP.jl LegendEventAnalysis.jl

LegendBSM.jl

DataTier

Offical

-physics 

ana

ParallelProcessingTools.jl

Registry

IO

Metadata & Pars

HPC Computing

LegendML.jl

https://github.com/JuliaPhysics/RadiationDetectorSignals.jl
https://github.com/JuliaPhysics/RadiationDetectorSignals.jl
https://github.com/legend-exp/LegendHDF5IO.jl
https://github.com/legend-exp/LegendDataTypes.jl
https://github.com/JuliaPhysics/RadiationDetectorDSP.jl
https://github.com/legend-exp/LegendSpecFits.jl
https://github.com/bat/BAT.jl
https://github.com/JuliaPhysics/RadiationSpectra.jl
https://github.com/JuliaPhysics/SolidStateDetectors.jl
https://github.com/legend-exp/LegendGeSim.jl
https://github.com/legend-exp/LegendDataManagement.jl
https://github.com/legend-exp/LegendDSP.jl
https://github.com/legend-exp/LegendEventAnalysis.jl
https://github.com/oschulz/ParallelProcessingTools.jl
https://github.com/legend-exp/LegendJuliaRegistry
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LEGEND Data

● All waveform data saved for offline 
processing

○ O(100) of HPGe channels

○ O(50) of SiPM channels

● raw tier based on HDF5
○ Cal runs ~1.1 TB

○ Phy runs ~700 GB 

20raw

RadiationDetectorSignals.jl

RadiationDetectorSignals.jl

LegendHDF5IO.jl / 
LegendDataTypes.jl

• Read/Write IO into custom signal structs
• Fully connected to LegendDataManagement
• Possibility to read custom compression 

algorithms

Custom plot recipes

https://github.com/JuliaPhysics/RadiationDetectorSignals.jl
https://github.com/JuliaPhysics/RadiationDetectorSignals.jl
https://github.com/legend-exp/LegendHDF5IO.jl
https://github.com/legend-exp/LegendDataTypes.jl


Digital Signal Processing

● First step in analysis chain →DSP
o Signal height contains energy information

o Signal derivative (“current”) contains Pulse Shape 

information

o Time points contain drift information

21raw dsp

RadiationDetectorDSP.jl

LegendDSP.jl

• Filter and stats algorithm definitions
• Easy-to-extent API
• Filter optimization routine and DSP block 

definitions custom to LEGEND
• (Almost) fully runnable on GPUs

https://github.com/JuliaPhysics/RadiationDetectorDSP.jl
https://github.com/legend-exp/LegendDSP.jl


Quality Cuts

● Quality cuts = Important step to 
identify non-physical events

● ML based quality cuts using 
Affinity Propagator

22raw dsp hitLegendML.jl

• So far: training process still in python

• Evaluation happens in Julia by exporting 
the models

• Julia implementation currently under active 

development



Energy Calibration

● Extract calibration curve + FWHM
● Each peak fitted with custom peak 

shape using
Bayesian Guided MLE technique
→ s. Olivers in next session

23raw dsp hit

Custom plot recipes

LegendSpecFit.jl

RadiationSpectra.jl

• Auto calibration routines based on 
combination of peak search and peak ratio 
matching

• For spectral fitting customized MLE methods 
with selectable peak shape

https://github.com/legend-exp/LegendSpecFits.jl
https://github.com/JuliaPhysics/RadiationSpectra.jl


● Energy Calibration: Linear fit of peak 
positions against literature values

● Peak FWHMs to extrapolate 
resolutions at Qββ

24raw dsp hit

Energy Calibration

LegendSpecFit.jl

RadiationSpectra.jl

• Auto calibration routines based on 
combination of peak search and peak ratio 
matching

• For FWHM and calibration, custom 𝜒2-fitter 
with generic PolynominamlFuncs and 
uncertainty handling via Measurements.jl

https://github.com/legend-exp/LegendSpecFits.jl
https://github.com/JuliaPhysics/RadiationSpectra.jl


Pulse Shape Discrimination
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Surface 𝜶Gamma backgroundSignal-Like event

• Localized
→ Single-Site Event (SSE)
• A/E always similar

• Multiple Compton scatterings, pair 
production, …

• →Multi-Site Event (MSE)
• A/E smaller than signal-like

• SSE, but short drift-time in large 
weighting potential but short drift-
time in large weighting potential

• A/E larger than signal-like



Pulse Shape Discrimination

Double Escape Peak (DEP) as proxy for Single Site Events (SSE)

26raw dsp hit
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n+ events

p+ events

SSEs

SEP

DEP

RadiationDetectorDSP.jl

LegendDSP.jl

https://github.com/JuliaPhysics/RadiationDetectorDSP.jl
https://github.com/legend-exp/LegendDSP.jl


A/E Cut

27

● Low-sided cut to reduce 
Multi-Site Events (MSE)

● High-sided cut at 3.0 σ to 
suppress α′s

raw dsp hitLegendSpecFit.jl

RadiationSpectra.jl

• Auto cut tuning routines based on a 
combination of energy calibration and fitting 
routines

https://github.com/legend-exp/LegendSpecFits.jl
https://github.com/JuliaPhysics/RadiationSpectra.jl


Event Building

→ Define Software trigger condition:

− Any{EnergyHPGe} > 25keV && waveform passes QC
→ Define physical event condition:

− All{HPGeNo-Trigger} == “Baseline-Only”

→ Define Lar cut condition:

− Sum{EnergySiPM in [t0 – 1µs, t0 + 5µs]} > 4 PE
→ Define Anti-Coincidence 

− Number{TriggerHPGe} == 1

→ Define PSD cut 

− All{HPGeTrigger} == Single-site events 28raw dsp hit evtLegendEventAnalysis.jl

https://github.com/legend-exp/LegendEventAnalysis.jl


SLURM Cluster Computing
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ParallelProcessingTools.jl

Can scale cluster up and down repeatedly, 
even from interactive Julia session

Timeout/retry mechanism, atomic file I/O with 
optional local caching, and more

Best LH5 write performance achieved so far 
1.2 TB in 70 seconds

Ran up to 4000 multi-cpu worker processes in 
parallel

Under development: better distributed 
progress and performance monitoring

Many long nights, but now we can … start with a single worker

All performed on MPCDF 
Munich HPC systems 
Cobra/Raven/Viper

https://github.com/oschulz/ParallelProcessingTools.jl


SLURM Cluster Computing
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ParallelProcessingTools.jl

Can scale cluster up and down repeatedly, 
even from interactive Julia session

Timeout/retry mechanism, atomic file I/O with 
optional local caching, and more

Best LH5 write performance achieved so far 
1.2 TB in 70 seconds

Ran up to 4000 multi-cpu worker processes in 
parallel

Under development: better distributed 
progress and performance monitoring

Poor little worker … this will take a while … let's invite some friends

All performed on MPCDF 
Munich HPC systems 
Cobra/Raven/Viper

https://github.com/oschulz/ParallelProcessingTools.jl


SLURM Cluster Computing
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ParallelProcessingTools.jl

Can scale cluster up and down repeatedly, 
even from interactive Julia session

Timeout/retry mechanism, atomic file I/O with 
optional local caching, and more

Best LH5 write performance achieved so far 
1.2 TB in 70 seconds

Ran up to 4000 multi-cpu worker processes in 
parallel

Under development: better distributed 
progress and performance monitoring

We can add workers on the fly via SLURM, connect to a running Julia session 

All performed on MPCDF 
Munich HPC systems 
Cobra/Raven/Viper

https://github.com/oschulz/ParallelProcessingTools.jl


SLURM Cluster Computing
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ParallelProcessingTools.jl

Can scale cluster up and down repeatedly, 
even from interactive Julia session

Timeout/retry mechanism, atomic file I/O with 
optional local caching, and more

Best LH5 write performance achieved so far 
1.2 TB in 70 seconds

Ran up to 4000 multi-cpu worker processes in 
parallel

Under development: better distributed 
progress and performance monitoring

… and let them take over:

All performed on MPCDF 
Munich HPC systems 
Cobra/Raven/Viper

https://github.com/oschulz/ParallelProcessingTools.jl


SLURM Cluster Computing
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ParallelProcessingTools.jl

Can scale cluster up and down repeatedly, 
even from interactive Julia session

Timeout/retry mechanism, atomic file I/O with 
optional local caching, and more

Best LH5 write performance achieved so far 
1.2 TB in 70 seconds

Ran up to 4000 multi-cpu worker processes in 
parallel

Under development: better distributed 
progress and performance monitoring

When we're done, we can remove the SLURM workers (save some 
budget) and continue:

All performed on MPCDF 
Munich HPC systems 
Cobra/Raven/Viper

https://github.com/oschulz/ParallelProcessingTools.jl


Altogether → Dataflow

Custom dataflow containing
○ Processor based execution of individual 

runs or detectors

○ Configuration via JSON

○ Debug mode for interactive testing

○ Can run on HPC, local notebook or 

single server natively

○ Custom mini graph computing for 

dependencies

○ Markdown based logging infrastructure 

○ Pars read and write with unit and error 

handling via Unitful.jl and 

Measurements.jl

34
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Summary & Outlook

● LEGEND features full Julia based 
Software Stack which can tackle all 
tiers

● Promising approach without any 
dependencies to other languages or 
tools 

● In future → Try to release more and 
more tools and general purpose 
packages 

And of course we have T-shirts



How to analyze a full experiment in Julia
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BACKUP



Role of Julia Software Stack

● Primary LEGEND software stack in Python, alternative in Julia
● Validation: Independent code guards physics results

against bugs in primary stack

● Experimentation: Primary stack needs stable interface,

alternative can use bleeding-edge technology and change/evolve more freely

● Future perspective: Find out what’s possible for LEGEND-1000

● Community-wide and LEGEND-specific open-source packages
● Custom dataflow and management routines for throughput cluster computing

38raw dsp hit evt



LEGEND Experiment
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Goal is to cover inverted ordering with 3𝝈 CL: 
𝑇1/2
0ν > 1028 yr

LEGEND-1000

LEGEND-200

GERDA
MJD

𝑚ββ ∝
1

𝑔𝐴
2 |𝑀0ν|

1

𝑇1/2
0ν 𝐺0ν

𝑚ββ : Effective Majorana mass

𝑇1/2
0ν : Decay half-life

𝑀0ν: Nuclear matrix element
𝐺0ν: Phase space factor



LEGEND Experiment

40



41

0νββ Decay Physics
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LEGEND Experiment



Filter Optimization

● To enhance performance

→ Filter parameter for energy and pulse shape parameters can be optimized

Two step process for energy filters:
1. Optimize rise time on baseline events
2. Optimize flat-top time by fitting peak shape and extract FWHM

43raw dsp hit tcm



Charge Trapping Correction

● Trapping of charge from the initial 
charge cloud during drift

● Can be corrected via the correlation 
of the drift time weighted with the 
charge

QDrift = Area2 – Area1

44raw dsp hit
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46raw dsp hit



SiPMs

• Find peak positions that

cross threshold

• Amplitudes of peak

positions in filtered

waveforms

• Discharges tagged by

flipping waveform

47raw dsp
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In uncalibrated histogram

• Find peaks “1 p.e.” and “2 p.e.” 

peak positions

• Linear calibration

raw dsp hit

SiPMs
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In uncalibrated histogram

• Find peaks “1 p.e.” and “2 p.e.” 

peak positions

• Linear calibration

raw dsp hit

SiPMs
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