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Google Summer of Code 2024

Investigate maturity of ML development with Julia and compare ease 
of use and performance against current popular solutions.

ML development is dominated by Python frameworks with core 
functionality implemented in C++ and CUDA.

Review of CaloChallenge to find most desired model as main subject 
for implementation.
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https://gist.github.com/guiyrt/1402fcf43c0d55baeb3d4671004a47a0
https://github.com/guiyrt/MLinJulia


CaloChallenge
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Aimed to spur the development and benchmarking of fast and high-fidelity calorimeter shower 
generation using deep learning methods. It also released datasets and evaluation metrics, providing a 
common benchmark for ML methods.

Traditionally, these simulations are carried out using GEANT4, which represents a major computational 
bottleneck and is forecast to overwhelm the computing budget of LHC.

Submissions cover 4 architecture types:

• Diffusion (best fidelity, but slower)

• Normalizing Flows

• GANs

• Variational Autoencoders (worse fidelity, but faster)



CaloDiffusion

Denoising diffusion model to generate realistic energy 
showers. It works by gradually adding noise to data 
over many steps, predicting the noise during training, 
and then generates new data from random noise.

Cylindrical Convolutions                                      
circular padding is added in the angular dimension, 
voxels close to the ends of the linear array properly 
interact with their angular neighbors on the opposite 
end.

Geometry Latent Mapping (GLaM)                   
learnable mapping from irregular data geometry to 
regular geometric structure. Used on datasets 1.
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Architecture



Flux.jl

Library for machine learning, provides building blocks for complex models and training them.

CaloDiffusion required the following base implementations:

Layers

• Dense

• Conv

• ConvTranspose

• GroupNorm

Activations

• Swish (SiLU)

• GELU
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Custom Layers

Python

using Flux

struct ConvBlock
conv::Conv
norm::GroupNorm

end

function ConvBlock(dim_in::Int, dim_out::Int, groups::Int=8)
ConvBlock(

Conv((3,3,3), dim_in=>dim_out; pad=1),
GroupNorm(dim_out, groups)

)
end

Flux.@layer ConvBlock

(cb::ConvBlock)(x::AbstractArray) = cb.conv(x) |> cb.norm |> swish

Julia

import torch
import torch.nn as nn

class ConvBlock(nn.Module):

def __init__(self, dim: int, dim_out: int, groups: int = 8,   
cylindrical: bool = False):

super().__init__()

self.conv = nn.Conv3d(dim, dim_out, kernel_size=3, padding=1)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()

def forward(self, x: torch.Tensor):
return self.act(self.norm(self.conv(x)))
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U-Net Forward Pass

Python

def forward(self, x, cond, time):
t = self.time_mlp(time)
c = self.cond_mlp(cond)
conditions = torch.cat([t,c], axis = -1)

h = []
x = self.init_conv(x)

# Downsample
for i, (block1, block2, downsample) in enumerate(self.downs):

x = block1(x, conditions)
x = block2(x, conditions)
x = self.downs_attn[i](x)
h.append(x)
x = downsample(x)

# Bottleneck
x = self.mid_block1(x, conditions)
x = self.mid_attn(x)
x = self.mid_block2(x, conditions)

# Upsample
for i, (block1, block2, upsample) in enumerate(self.ups):

s = h.pop()
x = torch.cat((x, s), dim=1)
x = block1(x, conditions)
x = block2(x, conditions)
x = self.ups_attn[i](x)
x = upsample(x)

return self.final_conv(x)

Julia

function (m::CondUnet)(x::AbstractArray, cond::AbstractArray,  
time::AbstractArray)

conds = cat(m.timenet(time), m.condnet(cond); dims=1)
reduceblocks = (out, block) -> block(out, conds)

@_ x |> m.inconv
|> reduce(reduceblocks, m.layers; init=__)
|> m.mid(__, conds)
|> reduce(reduceblocks, reverse(m.layers); init=__)
|> m.outconv

end 
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Tensor Operations – TensorCast.jl

Julia

import torch
from einops import rearrange

q, k, v = map(lambda t: rearrange(t, "b (h c) x y z -> b h c (x y z)", h=self.n_heads), qkv)

c = torch.einsum("b h d n, b h e n -> b h d e", k, v)

Python

using Flux, TensorCast

q, k, v = map((t -> @cast _[z⊗y⊗x, c, h, b] := t[z, y, x, c⊗h, b] h in 1:la.nheads), [q, k, v])

@reduce c[e, d, h, b] := sum(n) k[n, d, h, b] * v[n, e, h, b]
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LinearAttention layer used 
einops to rearrange tensor 
shape and torch for matrix 
multiplication.

TensorCast.jl handles both 
tensor manipulation for 
reshaping and operations 
such as multiplication.



Validating Implementation with PyCall

using PyCall, Flux
torch = pyimport("torch")
pymodels = pyimport("scripts.models")

reversedims(x::AbstractArray) = permutedims(x, ndims(x):-1:1)
fromtorchtensor(t::PyObject) = t.detach().numpy() |> reversedims

@testset "ConvBlock" begin
data = rand32(9, 16, 45, 16, 128)
torchdata = torch.Tensor(data |> reversedims)

torchcb = pymodels.ConvBlock(dim=16, dim_out=16, groups=8,    
cylindrical=true)

cb = ConvBlock(torchcb)

@test cb(data) ≈ torchcb(torchdata) |> fromtorchtensor
end

Julia test for ConvBlock
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PyCall allows us to import Python modules and 
files directly from Julia.

Some objects are converted automatically to 
Julia corresponding representation, such as 
NumPy Array to Julia Array.

Once implemented mapping for weights and 
biases from PyTorch to Flux.jl structs, their 
output can be compared with the same input.



Training Loop

Julia

For (E, data) in loader_train:
model.zero_grad()
optimizer.zero_grad()

data = data.to(device = device)
E = E.to(device = device)

t = torch.randint(0, nsteps, (data.size()[0],), device=device)
noise = torch.randn_like(data)

batch_loss = model.compute_loss(data, E, noise, t)
batch_loss.backward()

optimizer.step()

del data, E, noise, batch_loss

Python

for (x, e) in trainloader
t = rand(1:c.nsteps, size(x)[end]) |> device
noise = device == gpu ? CUDA.rand(size(x)...) :

rand32(size(x)...)
loss, grads = Flux.withgradient(batchloss, model, c, x, e, t, 

noise)
Flux.update!(optim, model, grads[1])
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Training Benchmarks – CPU 

Julia

Used BenchmarkTools.jl to obtain measurements over 20 samples. Easy to setup and provides total 
memory allocation and GC time.

With Python, used PyTorch’s built-in torch.utils.benchmark, which only measures time execution.

Python
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Batch Size Step Time Memory 

Allocated

GC Time (%)

4 3.09 s 3.46 GiB 44.85%

16 11.54 s 12.54 GiB 40.30%

32 22.91 s 24.65 GiB 39.78%

Batch Size Step Time Memory 

Allocated

4 0.31 s -

16 1.30 s -

32 2.75 s -



Training Benchmarks – CUDA 

Julia Python
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Batch Size Step Time Memory 

Allocated

GC Time (%)

4 87.95 ms 3.07 GiB 13.95%

16 333.53 ms 12.39 GiB 62.56%

32 651.30 ms 24.69 GiB 66.23%

Batch Size Step Time Memory 

Allocated

4 24.02 ms 282.60 MiB

16 37.72 ms 724.60 MiB

32 53.67 ms 1.22 GiB

When using NVIDIA GPUs, NVIDIA Nsight Systems can be used as an external profiler. It allows for a 
detailed analysis over time in terms of GPU utilization, memory utilization, kernel execution and more.



Python Profiling
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Batch size 32



Julia Profiling
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Batch size 32 - Best case scenario



Julia Profiling
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Batch size 32 - Worst case scenario



Conclusions

• In its current form, it’s possible to implement complex 
diffusion models with Flux.jl that are equivalent to 
PyTorch’s implementation.

• Garbage collection calls results in considerable 
performance degradation, in worst cases is 10x slower.

Next steps include benchmarking each custom layer 
individually and look for optimizations on forward pass.
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