
Machine Learning in Julia
for Calorimeter Showers

JuliaHEP 2024

Daniel Regado

Graeme Stewart Pere Mato Piyush Raikwar

Google Summer of Code 2024

Investigate maturity of ML development with Julia and compare ease
of use and performance against current popular solutions.

ML development is dominated by Python frameworks with core
functionality implemented in C++ and CUDA.

Review of CaloChallenge to find most desired model as main subject
for implementation.

Mentored by:

• Graeme Stewart

• Pere Mato

• Piyush Raikwar

Final Report • Repository

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 1

https://gist.github.com/guiyrt/1402fcf43c0d55baeb3d4671004a47a0
https://github.com/guiyrt/MLinJulia

CaloChallenge

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 2

Aimed to spur the development and benchmarking of fast and high-fidelity calorimeter shower
generation using deep learning methods. It also released datasets and evaluation metrics, providing a
common benchmark for ML methods.

Traditionally, these simulations are carried out using GEANT4, which represents a major computational
bottleneck and is forecast to overwhelm the computing budget of LHC.

Submissions cover 4 architecture types:

• Diffusion (best fidelity, but slower)

• Normalizing Flows

• GANs

• Variational Autoencoders (worse fidelity, but faster)

CaloDiffusion

Denoising diffusion model to generate realistic energy
showers. It works by gradually adding noise to data
over many steps, predicting the noise during training,
and then generates new data from random noise.

Cylindrical Convolutions
circular padding is added in the angular dimension,
voxels close to the ends of the linear array properly
interact with their angular neighbors on the opposite
end.

Geometry Latent Mapping (GLaM)
learnable mapping from irregular data geometry to
regular geometric structure. Used on datasets 1.

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 3

Architecture

Flux.jl

Library for machine learning, provides building blocks for complex models and training them.

CaloDiffusion required the following base implementations:

Layers

• Dense

• Conv

• ConvTranspose

• GroupNorm

Activations

• Swish (SiLU)

• GELU

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 4

Custom Layers

Python

using Flux

struct ConvBlock
conv::Conv
norm::GroupNorm

end

function ConvBlock(dim_in::Int, dim_out::Int, groups::Int=8)
ConvBlock(

Conv((3,3,3), dim_in=>dim_out; pad=1),
GroupNorm(dim_out, groups)

)
end

Flux.@layer ConvBlock

(cb::ConvBlock)(x::AbstractArray) = cb.conv(x) |> cb.norm |> swish

Julia

import torch
import torch.nn as nn

class ConvBlock(nn.Module):

def __init__(self, dim: int, dim_out: int, groups: int = 8,
cylindrical: bool = False):

super().__init__()

self.conv = nn.Conv3d(dim, dim_out, kernel_size=3, padding=1)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()

def forward(self, x: torch.Tensor):
return self.act(self.norm(self.conv(x)))

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 5

U-Net Forward Pass

Python

def forward(self, x, cond, time):
t = self.time_mlp(time)
c = self.cond_mlp(cond)
conditions = torch.cat([t,c], axis = -1)

h = []
x = self.init_conv(x)

Downsample
for i, (block1, block2, downsample) in enumerate(self.downs):

x = block1(x, conditions)
x = block2(x, conditions)
x = self.downs_attn[i](x)
h.append(x)
x = downsample(x)

Bottleneck
x = self.mid_block1(x, conditions)
x = self.mid_attn(x)
x = self.mid_block2(x, conditions)

Upsample
for i, (block1, block2, upsample) in enumerate(self.ups):

s = h.pop()
x = torch.cat((x, s), dim=1)
x = block1(x, conditions)
x = block2(x, conditions)
x = self.ups_attn[i](x)
x = upsample(x)

return self.final_conv(x)

Julia

function (m::CondUnet)(x::AbstractArray, cond::AbstractArray,
time::AbstractArray)

conds = cat(m.timenet(time), m.condnet(cond); dims=1)
reduceblocks = (out, block) -> block(out, conds)

@_ x |> m.inconv
|> reduce(reduceblocks, m.layers; init=__)
|> m.mid(__, conds)
|> reduce(reduceblocks, reverse(m.layers); init=__)
|> m.outconv

end

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 6

Tensor Operations – TensorCast.jl

Julia

import torch
from einops import rearrange

q, k, v = map(lambda t: rearrange(t, "b (h c) x y z -> b h c (x y z)", h=self.n_heads), qkv)

c = torch.einsum("b h d n, b h e n -> b h d e", k, v)

Python

using Flux, TensorCast

q, k, v = map((t -> @cast _[z⊗y⊗x, c, h, b] := t[z, y, x, c⊗h, b] h in 1:la.nheads), [q, k, v])

@reduce c[e, d, h, b] := sum(n) k[n, d, h, b] * v[n, e, h, b]

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 7

LinearAttention layer used
einops to rearrange tensor
shape and torch for matrix
multiplication.

TensorCast.jl handles both
tensor manipulation for
reshaping and operations
such as multiplication.

Validating Implementation with PyCall

using PyCall, Flux
torch = pyimport("torch")
pymodels = pyimport("scripts.models")

reversedims(x::AbstractArray) = permutedims(x, ndims(x):-1:1)
fromtorchtensor(t::PyObject) = t.detach().numpy() |> reversedims

@testset "ConvBlock" begin
data = rand32(9, 16, 45, 16, 128)
torchdata = torch.Tensor(data |> reversedims)

torchcb = pymodels.ConvBlock(dim=16, dim_out=16, groups=8,
cylindrical=true)

cb = ConvBlock(torchcb)

@test cb(data) ≈ torchcb(torchdata) |> fromtorchtensor
end

Julia test for ConvBlock

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 8

PyCall allows us to import Python modules and
files directly from Julia.

Some objects are converted automatically to
Julia corresponding representation, such as
NumPy Array to Julia Array.

Once implemented mapping for weights and
biases from PyTorch to Flux.jl structs, their
output can be compared with the same input.

Training Loop

Julia

For (E, data) in loader_train:
model.zero_grad()
optimizer.zero_grad()

data = data.to(device = device)
E = E.to(device = device)

t = torch.randint(0, nsteps, (data.size()[0],), device=device)
noise = torch.randn_like(data)

batch_loss = model.compute_loss(data, E, noise, t)
batch_loss.backward()

optimizer.step()

del data, E, noise, batch_loss

Python

for (x, e) in trainloader
t = rand(1:c.nsteps, size(x)[end]) |> device
noise = device == gpu ? CUDA.rand(size(x)...) :

rand32(size(x)...)
loss, grads = Flux.withgradient(batchloss, model, c, x, e, t,

noise)
Flux.update!(optim, model, grads[1])

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 9

Training Benchmarks – CPU

Julia

Used BenchmarkTools.jl to obtain measurements over 20 samples. Easy to setup and provides total
memory allocation and GC time.

With Python, used PyTorch’s built-in torch.utils.benchmark, which only measures time execution.

Python

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 10

Batch Size Step Time Memory

Allocated

GC Time (%)

4 3.09 s 3.46 GiB 44.85%

16 11.54 s 12.54 GiB 40.30%

32 22.91 s 24.65 GiB 39.78%

Batch Size Step Time Memory

Allocated

4 0.31 s -

16 1.30 s -

32 2.75 s -

Training Benchmarks – CUDA

Julia Python

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 11

Batch Size Step Time Memory

Allocated

GC Time (%)

4 87.95 ms 3.07 GiB 13.95%

16 333.53 ms 12.39 GiB 62.56%

32 651.30 ms 24.69 GiB 66.23%

Batch Size Step Time Memory

Allocated

4 24.02 ms 282.60 MiB

16 37.72 ms 724.60 MiB

32 53.67 ms 1.22 GiB

When using NVIDIA GPUs, NVIDIA Nsight Systems can be used as an external profiler. It allows for a
detailed analysis over time in terms of GPU utilization, memory utilization, kernel execution and more.

Python Profiling

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 12

Batch size 32

Julia Profiling

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 13

Batch size 32 - Best case scenario

Julia Profiling

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 14

Batch size 32 - Worst case scenario

Conclusions

• In its current form, it’s possible to implement complex
diffusion models with Flux.jl that are equivalent to
PyTorch’s implementation.

• Garbage collection calls results in considerable
performance degradation, in worst cases is 10x slower.

Next steps include benchmarking each custom layer
individually and look for optimizations on forward pass.

30 September 2024JuliaHEP 2024 | Machine Learning in Julia for Calorimeter Showers Slide 15

	Slide 0: Machine Learning in Julia for Calorimeter Showers
	Slide 1: Google Summer of Code 2024
	Slide 2: CaloChallenge
	Slide 3: CaloDiffusion
	Slide 4: Flux.jl
	Slide 5: Custom Layers
	Slide 6: U-Net Forward Pass
	Slide 7: Tensor Operations – TensorCast.jl
	Slide 8: Validating Implementation with PyCall
	Slide 9: Training Loop
	Slide 10: Training Benchmarks – CPU
	Slide 11: Training Benchmarks – CUDA
	Slide 12: Python Profiling
	Slide 13: Julia Profiling
	Slide 14: Julia Profiling
	Slide 15: Conclusions

