
Graeme Stewart (with Philippe Gras and Atell Krasnopolski)

JetReconstruction.jl
JuliaHEP 2024

 1

Jet Finding
• Jet finding is a good example of a “goldilocks”

algorithm to test Julia

• The goal is to cluster calorimeter energy

deposits into jets

• There exists a highly optimised C++ package,

almost ubiquitously used, FastJet

• There are a number of algorithms for jet

clustering

• AntiKt clustering is popularly used for pp

collisions because it is an infrared and co-
linear safe [arXiv:0802.1189]

• We get to test language ergonomics and
performance

2

https://fastjet.fr
https://arxiv.org/abs/0802.1189

Sequential Jet Reconstruction
• Define parameters and

• Not used by all algorithms, but is a “cone size” and is a metric
distance power

• For each active pseudo-jet (=particle, cluster) measure the geometric
distance, , to the nearest active pseudo-jet

• If is defined, and there are no other pseudo jets with , then

• Define the metric distance, , as

• or

• Choose the jet with the lowest

• If this jet has an active partner j, merge these jets

• If not, this is a final jet

• Repeat until no jets remain active

p R
R 2p

i
d j

R R d = R
dij

dij = d ⋅ min(p2p
Ti , p2p

Tj) dij = d ⋅ min(E2p
i , E2p

j)

dij

3

For pp events:

 AntiKt

 Cambridge/Achen

 Inclusive Kt

p = − 1
p = 0
p = 1

Status Last Year
• Very encouraging results

from Julia

• At least as good as Fastjet

for pp event reconstruction

• Decided that this was worth

changing from an R&D
endeavour to a real package

• Released in June this year as
JetReconstruction.jl 🎉

4

https://github.com/JuliaHEP/JetReconstruction.jl

The Release
• A fair amount of refactoring was required to ensure that the two pp strategies (N2Plain and

N2Tiled) behaved in the same way

• Internal restructuring to uniformly use PseudoJets and return ClusterSequence objects

• Implemented exclusive jet selections (n_jet or dij_max cut)

• Implemented generalised kT algorithm (i.e. for arbitrary)

• Choice of strategies: N2Plain, N2Tiled and Best

• Fixes to visualisation and improved examples

• Significant improvements to documentation (helped by Co-pilot!)

• Overview, method and structure documentation

• Documenter.jl setup

• Published at https://juliahep.github.io/JetReconstruction.jl/dev/

p2p
T p

5

✅

Thanks to Jerry Ling
for the beautification

tweaks!

https://documenter.juliadocs.org/stable/
https://juliahep.github.io/JetReconstruction.jl/dev/

Interface

6

Particles is a vector of 4-
momentum objects; specify
algorithm and any other
parameters

Clusters = jet_reconstruct(particles; algorithm = JetAlgorithm.AntiKt, R = 1.0)

jets = inclusive_jets(clusterseq; ptmin = 5.0)

jets = exclusive_jets(clusterseq; njets = 3)

or

then

and maybe
constituents = JetReconstruction.constituents(jet, clusterseq)

Inclusive jets are “finalised”
merged jets; exclusive jets
rewinds reconstruction to the
point where, e.g., there were
only 3 jets remaining

Constituents usually then
passed to a particle ID
algorithm (N.B. this API not
finalised)

Feedback, Contributions and Extensions
• The package was picked up by an ATLAS summer student

• Very much successfully used and praised c.f. other student’s Python work

• Needed to add a constituents retrieval function

JetReconstruction.constituents(jet, cluster_seq)

• I would not consider this stable quite yet, as there could be a better API

• Also Sattwamo started to implement substructure and taggers (next talk!)

• Started to discuss with our FCCee colleagues how to use this to extend FCC

analysis in Julia beyond the purely kinematic examples

• This required the different set of algorithms favoured for e+e- events…

7

A Tale of Two Particle (Algorithms)
• The main difference between and algorithms is that

• Geometric distance metric is defined in angular space instead of in rapidity
space

• metric uses instead of

pp e+e−

(θ, ϕ)
(y, ϕ)

dij E2p p2p
T

8

Durham (e+e-) Generalised kT (e+e-) AntiKt (pp)

Geometric Distance 1 - cos θij 1 - cos θij Rij = √(ϕi-ϕj)2 - (yi - yj)2

dij 2 min(Ei2, Ej2)(1 - cos θij) min(Ei2p, Ej2p)(1 - cos θij)

/(1 - cos R) min(pTi-2, pTj-2) Rij2 / R2

Parameters p, R R

Notes For p=1, π < R < 3π
equivalent to Durham

p=-1 is AntiKt, p=0 is Cambridge
Aachen, p=1 inclusive kT

A Few Implementation Details…
• The PseudoJet class used in the pp reconstruction wasn’t very suitable for e+e-

• It is working in space not space

• Want to cache normalised momenta to calculate from a dot product

• There’s a new EEJet class

• Concrete subtype of abstract FourMomentum (as is PseudoJet)

• However, LorentzVectorHEP isn’t…

• Wouldn’t it be nice to have a FourMomentumBase (hackathon!)

• The tiled strategy is not implemented here

• Particle densities are too low to make this worthwhile

(y, ϕ) (θ, ϕ)
θij

9

Performance
• Initial performance was pretty disappointing

• Slower than FastJet (which has a very

optimised implementation for these geometric
reconstructions)

• Did a rewrite using StructureOfArrays layout for all
quantities used in the reconstruction sequence

• I took advantage of StructArrays.jl to do this

• Make it look like an ArrayOfStructs, but it’s SoA

underneath

• Provided quite some speed-up for Apple M2

• Made no difference on x86 (AMD Ryzen and

Intel i7)!?

• Fastjet is ~20% faster at the moment

10

e+e− → Z

e+e− → H

https://juliaarrays.github.io/StructArrays.jl/stable/

What’s Next
• ee

• Be able to smoothly handle EDM4hep data

• Should not be very hard to do

• Bonus points: EDM4HepReconstructedParticle <:
FourMomentumBase

• Stabilise constituents interface

• Needed for the next reconstruction step, particle identification

• pp

• Integrate Sattwamo’s work on substructure and taggers

• General care and feeding

• Proper parameterised internal types (Float32, Float64)

• Take another look at optimisation…?

11

Hackathon Topics

• FourMomentumBase

• Static compilation

Backup

12

Durham Algorithm - Different CPUs

13

Intel i7-3770, 3.7GHz AMD Ryzen 7 5700G
3.8GHz

Apple M2Pro 3.5GHz

