perfSONAR Network Analytics

#52 LHCOPN-LHCONE Meeting IHEP Beijing CN 9 - 12 Oct 2024 Petya Vasileva, U Michigan Marian Babik, CERN Shawn McKee, U Michigan Ilija Vukotic, U Chicago

Status and Plans

pS platform

Analytics Tools Covered in this presentation

Alarms and Alerts
pSDash
ML implementation (in progress)

Alarming & Alerting Service: <u>https://psa.osg-htc.org/</u> The perfSONAR Dashboard application: <u>https://ps-dash.uc.ssl-hep.org/</u>

How to subscribe for email alerts

Sat, 05 Oct 2024 03:02:07 Networking/Perfsonar/firewall issue Firewall issue tags: GSI-LCG2-LHCONE Site: GSI-LCG2-LHCONE, perfsonar node: <u>dclxdlperfsonar2.gsi.de</u> seems to have a firewall issue. Packet loss is 100% from at least 10 hosts. Affected sites: ['CERN-PROD-LHCOPNE', 'NLT1-SARA-LHCOPNE', 'PRAGUELCG2-LHCONE', 'PIC-LHCOPNE', 'IN2P3-CC-LHCOPNE']. More infromation could be found in pSDash: <u>https://ps-dash.uc.ssl-hep.org/loss-</u>delay/bdf4ce3c56b604ace5944490946673b1e218b376fb15b4230afaf9aa

What you'll receive

In the past 12 hours, path between 12 pairs diverged and went through ASN 174 owned by COGENT-174, US. The change affected the following sites ['SPRACE-REDNESP', 'CA-WATERLOO-T2-LHCONE', 'UKI-LT2-QMUL', 'RRC-KI-T1-LHCOPNE', 'CERN-PROD-LHCOPNE', 'DESY-ZN-LHCONE', 'INFN-T1-LHCOPNE', 'MWT2_IU', 'UKI-SOUTHGRID-RALPP-LHCONE', 'JP-KEK-CRC-02', 'CBPF-LHCONE', 'PIC-LHCOPNE', 'IN2P3-CC-LHCOPNE']. The code can be found on pS-Dash: <u>https://ps-dash.uc.ssl-hep.org/paths/c648363dca4131c09b9daee028215540ac6bc3bc8329c175961b74aa</u>

Tue, 02 Jul 2024 04:08:11 Networking/Sites/bandwidth decreased bandwidth decreased tags: JINR-LCG2-LHCONE, UKI-SOUTHGRID-RALPP-LHCONE Bandwidth decreased for the ipv6 links between sites JINR-LCG2-LHCONE and UKI-SOUTHGRID-RALPP-LHCONE. Current throughput is 17 MB, dropped by -98% with respect to the 21-day-average. More infromation could be found in pS-Dash: https://ps-dash.uc.ssl-hep.org/throughput/7cedc9ccf2c135d32acae685b34d714837fc6e3579b9143a452b3b4f

Understanding the paths (via pSDash)

perfSONAR Toolkit Information		Packet Loss in OSG/WLCG	Kibana: Packet Loss Tracking	MEPHi Tracer: Traceroute explorer	
୭୦ ସବ୍ଟାଧ Sites	VERVIEW	SEARCH ALARMS	EXPLORE PATHS	MAJOR ALARMS	
Site Status Dashboa	Summary	• • • • • • • • • • • • • • • • • • •	Highest number of alarms from site GSI-LCG2-LHCONE (DE): 26	Highest number of alarms from country United Kingdom: 83	

How was the status determined?

Types of alarms

NETWORK

destination cannot be reached source cannot reach any destination bad owd measurements large clock correction complete packet loss firewall issue

INFRASTRUCTURE

bandwidth decreased on multiple sites path changed between sites unresolvable hosts no tests for a host

Other

bandwidth increased bandwidth decreased (on a single pair) high packet loss

The goal is to proactively discover network issues

How to combine pS tests?

Tests' rate of execution varies by type

6-24 hours

traceroute test every 10 min

throughput test every 6-24 hours

Correlate network tests

Trends on routers

Each **point** represents the throughput values collected when the node was on the path

Challenges

Path from JINR-T1-LHCOPNE to BEIJING-LCG2

To build **reliable topology** models for identifying weak points on the network, we need to **reconstruct the paths**

What is the most probable C, given it's between A and B?

Possible intermediates: r237 P(AtoC)= 0.008 and P(CtoB)= 0.038 r265 P(AtoC)= 0.056 and P(CtoB)= 0.009 r536 P(AtoC)= 0.176 and P(CtoB)= 0.551 r792 P(AtoC)= 0.072 and P(CtoB)= 0.008 r838 P(AtoC)= 0.008 and P(CtoB)= 0.01 The most probable intermediate router between r792 and r237 is r536 with a probability of 0.097

There are multiple possibilities for C. What is the correct node that lies between A and B depends more on the surrounding nodes rather than on highest probability value

Site to site path signature

5

Unknown IP

Each color is a different IP

TTL (Hop Number)

Destination Reached

Path reconstruction via ML

- Transformer model
- Pays attention to the nodes preceding the one in question
- Currently excludes unknown nodes as targets

2.25 Train Loss Validation Loss 2.00 1.75 so 1.50 1.25 1.00 0.75 0 5 10 15 20 25 30 35 40 Epochs

The model performs well and converges quickly

Path signature between UKI-LT2-IC-HEP and T2_US_WISCONSIN

Destination Reached

Corner cases

Next steps

Include the **corner cases** by:

- Creating "confidence score" to be used into the loss function
- Collapsing the multiple consecutive unknown nodes into a single one

Implement another sequence model to compare the results

Once the **topology** is **fixed**, we can proceed by building more **complex models** that incorporate other metrics such as **loss, bandwidth** or **file transfer** statistics

Acknowledgements

We would like to thank the WLCG, HEPiX, perfSONAR and OSG organizations for their work on the topics presented.

In addition we want to explicitly acknowledge the support of the **National Science Foundation** which supported this work via:

- OSG: NSF MPS-1148698
- IRIS-HEP: NSF OAC-1836650

Thank you!

Any questions?

Contact us @ net-discuss@umich.edu

Get your site name

from pSDash: <u>https://ps-dash.uc.ssl-hep.org/search-alarms</u>

List of alarms

Get your site name

from CRIC: <u>https://wlcg-cric.cern.ch/core/networkroute/list/</u>

		Site Topology -	Pledges - Accounting -	Downtime -	Admin	▪ Logs ▪ 🚯 Help ▪ 🛔 pe	ya.vasilev 👻	
💊 🗹 Export 🔒 🤤	Filter Columns 10/11	NetworkRoute list						
RC Site	NetworkRoute	NetSite	ASN I1	monit URL II	MS 11	Subnets	LHCONE	
AGLT2	I AGLT2_LHCONE_RT	US-AGLT2 Michigan State University	229		×	2001:48a8:68f7:4000::/50, 2001:48a8:68f7:c000::/50	100	
AGLT2		US-AGLT2 Michigan State University	229		×	192.41.236.0/23, 192.41.238.0/28	100	
AGLT2	I AGLT2_MSU IPv6	US-AGLT2 Michigan State University	237		×	2001:48a8:68f7:8001::/64, 2001:48a8:68f7:8000::/50	100	
AGLT2	Ø ⊞ AGLT2_UM	US-AGLT2 University of Michigan	229		×	192.41.230.0/23, 192.41.238.0/28, 35.199.60.100/32	80	
AGLT2	Ø ⊞ AGLT2_UM IPv6	US-AGLT2 University of Michigan	237		×	2001:48a8:68f7:1::/64, 2001:48a8:68f7::/50	80	
ANLASC	I ■ ANLASC-ANL-LHCONE	US-ANL	683		×	140.221.68.0/24, 140.221.69.0/24, 140.221.96.0/23, 140.221.112.0/20, 2620:0:dc0:4800::/59	100	
ARNES	C HARNES-SL-ARNES-NREN-LHCONE	SL-ARNES-NREN	2107		×	153.5.72.0/23, 2001:1470:8000:406::/64	100	
ARNES	C HARNES-SL-IJS-Ljubljana-LHCONE	SL-IJS-Ljubljana	2107		×	194.249.156.0/24, 2001:1470:ff8a::/48	100	
ARNES	C HARNES-SL-IZUM-Maribor-LHCONE	SL-IZUM-Maribor	2107		×	153.5.68.0/22, 2001:1470:ff94::/48	100	
Australia-ATLAS	I → Australia-ATLAS-LHCONE	AU-Australia-ATLAS	7575		×	128.250.185.224/27, 192.231.127.0/24, 192.43.208.0/24	10	

Transformer model: Preprocessing example

The dataset

