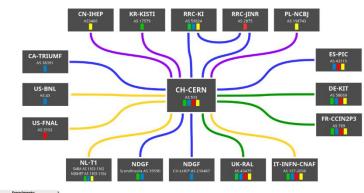
Research of Wide Area Network Performance Anomaly Detection

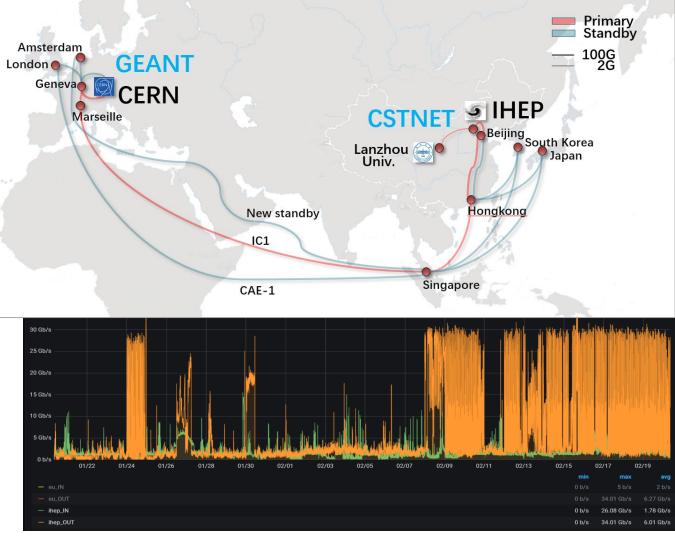
Technology Based on Machine Learning

Shan Zeng, Cheng Li on behalf of IHEP network group Funded by NSFC (No. 12175258)

> zengshan@ihep.ac.cn 2024/10/10

Outline


Background


- Related works
- Architecture design
- Analysis method and process
- Research progress
- Future plan
- Summary

Background

- IHEP endorsed as a new WLCG Tier-1 site (June,2024), WAN bandwidth was upgraded from 40Gbps to 100Gbps
 - LHCOPN@IHEP
 - 20Gbps bandwidth guaranteed
 - 3 links redundancy
 - ~ 200ms latency
 - LHCONE@IHEP
 - 100Gbps bandwidth shared

LHC PN

LHCOPN-LHCONE Meeting #53 @IHEP

Background: network challenges

- Network is a critical part of WLCG's infrastructure, becomes more and more important to assure the site availability and reliability
- Many network challenges from daily network operation
 - Issue debugging is difficult and time-consuming
 - How to thoroughly and vividly demonstrate various network measurement results to the application
 - How to promptly detect and resolve the network issues

Background: current status of peer research

Network performance R&D is essential in view of HL-LHC

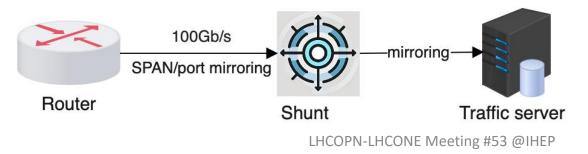
 Effective network usage and prompt detection as well as resolution of any network issues need to be guaranteed

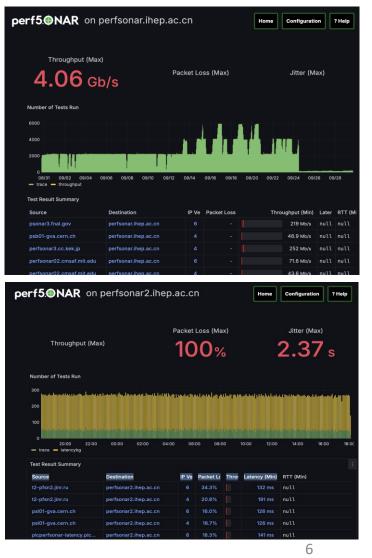
Reports from CHEP/HEPiX/LHCOPN-LHCONE meeting

- Shawn: Analyzing, Identifying & Alerting on Network Issues
 - https://indico.jlab.org/event/459/contributions/11662/attachments/9322/13521/CHEP-Poster-NetAnalytics-Final.pdf
- *Petya:* perfSONAR Network Analytics through Machine Learning
 - https://indico.cern.ch/event/1410638/contributions/6127645/attachments/2944638/5174511/perfSONAR%20Network%20Analyt ics%20-%20Status%20&%20Plans.pdf

The network performance needs to be closely monitored and evaluated Network analytics R&D is essential for providing high quality network services Machine learning methods seem well-suited to solving these types of problems

Related works


Active measurement of network performance


perfSNAR

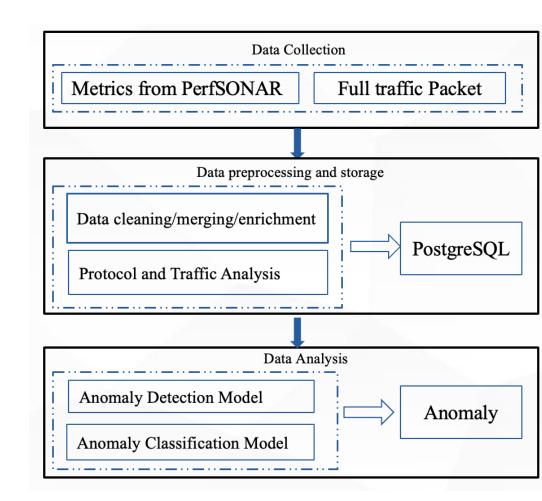
– IHEP perfSONAR upgraded to the latest version: v5.1.3

IHEP WAN traffic are captured and stored in local file system

- Full traffic packet captured, in case of issue omitted
 - Captured by tcpdump, stored as .cap file
 - every 10 minutes a file, data volume is 1.4TB-7TB per day
- in-depth understanding of the network communication
 - Establish connection, data transmission, release connection ...
- Find out the root cause of problems during communication between applications

Architecture design

What we get?

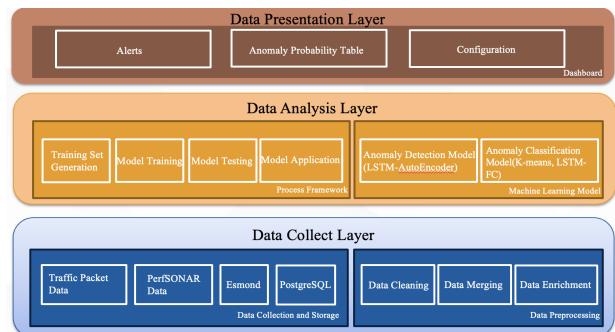

- WAN performance monitoring metrics from perfSONAR
- WAN full traffic packet by mirroring

What we want?

- Find network anomalies when exist
- highlight the time periods of these anomalies
- provide a classification table of anomaly types
- Identify the anomaly classification and the time it occurs

How we did?

- Data cleaning to remove invalid data
- Data merging to merge perfSONAR metrics and traffic packet
- Data enrichment to enrich the institute name and its nodes
- PostgreSQL for storage
- ML model for analyzing
 - Anomaly detection
 - Anomaly classification

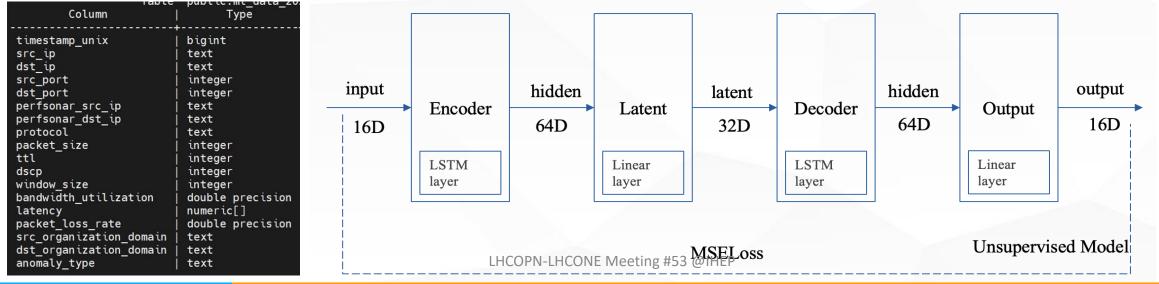

3-layer structure design

Data Collect Layer

- Collect perfSONAR metrics data through Esmond API
- Analyze the JSON data return from Esmond, after data cleaning, merge with the traffic packet data
- Enriching the data with institution information
- Install them in the data warehouse: PostgreSQL
- **Data Analysis Layer:** two ML models are provided
 - Anomaly detection model
 - based on LSTM-AutoEncoder
 - Anomaly classification model
 - based on K-means&LSTM-FC

Data Presentation Layer

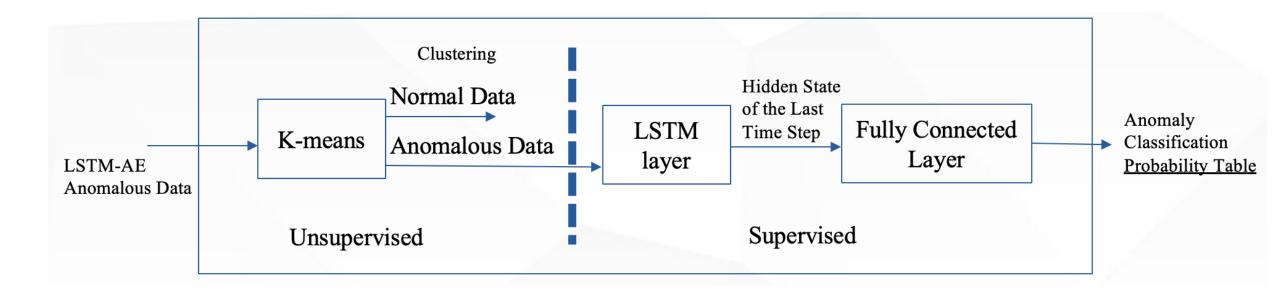
- Provide interface to other systems/platforms
- Provide configuration dashboard to administrators


Anomaly detection model

LSTM autoencoder model was designed

- the reconstruction loss is first computed using the autoencoder. If the reconstruction loss is large, the data is considered to be anomalous
- Encoder: LSTM extracts information at each time step and stores it in a 64-dimensional space
- Latent layer: Extract the hidden state and compress it into a lower-dimensional latent vector
 - The dimensionality reduction process can be viewed as 'compressing' complex high-dimensional data and extracting the most important and informative features.

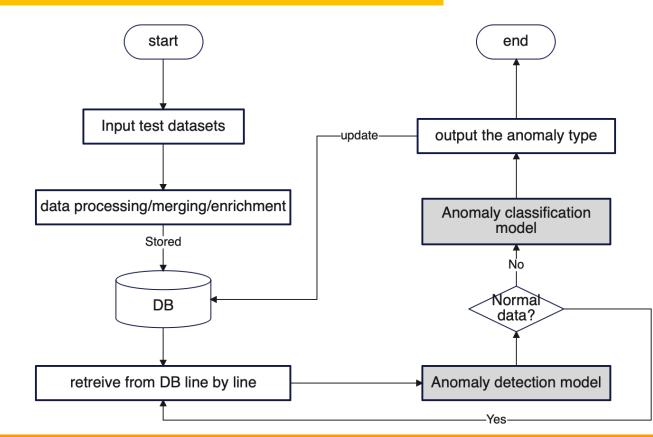
9


- **Decoder**: Decode the latent vector back to the shape of the input sequence
- Output layer: Convert the hidden state of the decoder LSTM back into a reconstruction sequence with the same dimension as the original input.

Anomaly classification model

K-means and LSTM model was designed

- To identify previously undiscovered types of anomalies, the K-means algorithm is used to cluster the anomalous data
- A fully connected layer is utilized to determine the specific categories of the anomalous data

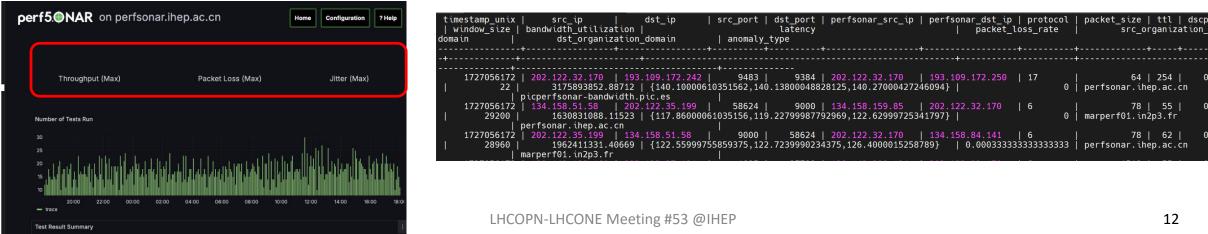


How it works

Step1: Train the ML models using the training dataset

Step2: Tuning the model parameters to make sure the ML model is ready

Step3: Testing started...


Research progress

Data engineering

- Table has been created and metrics data can be inserted automatically through Python scripts
- parallel processes are running background to provide high performance automatic datasets creation
- Issues we meet: some metrics data from the newest perfSONAR are missing

Training model

- The unsupervised training model for the LSTM-AE anomaly detection part has been developed
 - using normal data to train the LSTM-AE model
 - However, due to insufficient dataset size and parameter tuning issues, the training results aren't ideal
 - Efforts should be done to overcome these challenges.

Future plan

ElasticSearch/OpenSearch cluster is considered to be used to handle the huge amount of data sets

Increase the quantity of the test data sets

- Enhance the dataset size to provide more comprehensive testing
- Processing efficiency of data engineering should also be concerned

Strengthen the LSTM-AE model's ability to handle missing data

- Focus on adequately training the model to improve its resilience to data gaps

Develop the anomaly classification model

– Once the anomaly detection component is completed, proceed to design the model for anomaly classification

Design and develop alert visualizations

Summary

- The purpose is to quickly find the network anomalies through network performance assessment
 - Based on the newest version of perfSONAR and full network traffic packet analysis

We started to do the research since the middle of this year

- Architecture design was finished
- Recently most work focused on data engineering
- More exchanges with the perfSONAR team will be conducted
- Some functions of analysis model have been developed
- More functions need to be developed and optimized

Any suggestions and cooperation are welcomed and needed

Thanks for your attentions

Questions, Comments, Suggestions?