
The “green” use of fluorocarbons in Cherenkov detectors 

challenges and opportunities in an unfolding era of alternatives.

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

See also: 
https://indico.cern.ch/event/1263731/contributions/5398511/attachments/2648319/4584649/G_Hallewell_

DRD4%20Rad%20Gas%20GWP%20with%20annexes%20May%2016%202023.pdf

https://indico.cern.ch/event/1371158/contributions/5773321/attachments/2788215/4861759/G_Hallewell_
ATLAS_sustainability_forum_Jan_26_2024_v2.pptx

“From the Speed of Sound to the Speed of Light: and beyond!”
G. D. Hallewell

Aix Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
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Main points being considered here
• COMPASS and LHCb use C4F10 and CF4 Cherenkov gas radiators.

These Saturated FuoroCarbons (CnF(2n+2)) have high GWPs, however

(5000-9000*CO2) so there is impetus to reduce their consumption.

• Sound velocity monitoring was used for controlling real-time blending C5F12

with N2 in the SLD CRID and is used in ATLAS. New algorithms permit use in 

gas mixtures with known levels of multiple other contaminant gases

• The technique could be valuable in the future operation to meet optical & 

low GWP constraints of future blended Cherenkov gas radiators. 

• Oxygenated fluorocarbons (CnF2nO) offer similar optical performance, with GWPs 

equivalent to CO2. GWPs are geometry-specific however: closed molecular rings 

with internal oxygen atom link have GWPs as high as SFCs:  to be avoided.

• Legislation & market forces will limit FC availability, maybe leaving “holes” in 

the CnFx “spectrum”, unfilled by CnF2nO equivalents. 

• Blending low molar concentrations of heritage-stock higher-order SFCs 

or 3M NOVEC®5110: C5F10O (GWPzero) with light gases, N2, Ar, CO2… would   

reduce radiator volume GWP “load”.

Examples are explored.
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Molecular shapes and GWP (1)

Upper: molecular shapes of SFCs, including common gaseous Cherenkov radiators 

Lower: shapes of some non-cyclic CnF2nO analogues

(20-year GWPs noted where known – refs at end) 

SATURATED FLUOROCARBONS (CnF(2n+2))

FLUOROKETONES (CnF2nO)
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Shape examples of cyclic, non-cyclic 

& non-cyclic C4F8O isomers (refs at end).

Molecular shapes and GWP (2)

!!

?☺
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This latest report (2020) now seems to be the only one easily accessible

https://doi.org/10.25325/CERN-Environment-2023-003

R449: (CFH blend) GWP=1397

R1234 (HFO): GWP = 7

NOVEC 649 (C6F12O): GWP=0
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https://doi.org/10.25325/CERN-Environment-2023-003
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But no mention at all of the ATLAS ultrasonic fluorocarbon leak monitor system !

https://doi.org/10.25325/CERN-Environment-2023-003
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CERN has tested NOVEC 649

Equivalent radiation stability to C6F14

used as liquid coolant in all LHC experiments;
(Also non-flammable, non-toxic, 

dielectric, non-O3 depleting);

(C6F12O) needs dessicants, but standard molecular sieves, 

activated-C OK:  chosen SiPM coolant; LHCb Sci-Fi tracker
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Fluid thermophysical

property

NOVEC 649: 

C2F5C(O)CF(CF3)2 Perfluoro-2-

methyl-3-pentanone (C6F12O 

fluoro-ketone)

C6F14

(Perfluorohexane,

Saturated fluorocarbon)

Boiling temp @ 1 atm (˚C) 49 56

Critical Temp (˚C) 169 178

Critical Pressure (MPa) 1.87 1.89

Freezing temperatre (˚C) < -100 < -100

Specific heat (J.kg-1K-1) 1103 1050

Density (kg.m-3) 1610 1680

Kinematic viscosity (cSt) 0.42 0.4

Latent Heat (J.kg-1) 88 88

Vapour Pressure @ 25 ˚C 

(kPa)

40.4 30.9

Vapour Pressure @ 100 ˚C 

(kPa)

441 350

Water solubility (ppmw) 21 10

Thermophysical Properties of NOVEC 649 (C6F12O) & C6F14  

(at 25°C except where noted)

Analogy: a Fluoroketone (CnF2nO) replacement 

for a saturated fluorocarbon (CnF(2n+2))

No reason why the parameters

between other SFCs and same

order FK analogs shouldn’t be

similarly similar…
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Another exciting example: Novec 5110: 
C5F10O MW = 266: GWP <1

11
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So why are spurred fluoro-

ketones

CnF2nO 

potential substitutes for 

saturated fluorocarbons?

CnF(2n+2)

12
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Q:  But What gives NOVEC 649/1230 
(a spurred-Oxygen fluoro-ketone) its low GWP?

A: Structure!: a double-bonded oxygen atom on 
a peripheral spur of  the molecule

This fluoro-ketone configuration is:
CF3CF2C(O)CF(CF3)2

13

13
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Q: What gives NOVEC 649/1230 its low GWP?

Scission by UV photons of  l around 300 nm
In the atmosphere (low pressure, high UV): the fragments 

do not reassociate* into saturated fluorocarbons of  the 
type CnF(2n+2) (which would have high GWP) 

*The Environmental Impact of  CFC Replacements HFCs and HCFCs
T. WALLINGTON et al Environ.Sci.Technol.1994(28)7 320A 
https://doi.org/10.1021/es00056a714

https://www.nist.gov/system/files/documents/el/fire_research/R0301570.pdf
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[15]
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Positive and Negative 

exeriences with C4F8O as a 

substitute for C4F10 

Cherenkov radiator gas

(BTeV and ALICE VHMPID)

15
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16 BTeV study: optics good – GWP not 
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Shapes of CnF2nO molecules and GWP: 

3M Specialty Gas PFG-3480 is a high-performance chamber cleaning 
gas that has environmental advantages and can help reduce operating 
costs. PFG-3480 reduces emissions of global warming compounds by 

90 percent when compared to the traditional plasma enhanced chemical 
vapor deposition(PECVD) cleaning gas, C2F6. The replacement does 

not require changes to existing processes

Perfluortetrahydrofuran – The BTeV choice 

From June 2000 3M datasheet

https://repository.library.noaa.gov/
044ed5ad-93ae-40e3-9420-d78
a4729ff0f

17
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Shapes of CnF2nO molecules and GWP: 
Octafluortetrahydrofuran – the probable ALICE VHMPID config

C4F8O acquired from Synquest (FL,USA) : reported by A. di Mauro: 
18
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The ideal new radiator fluids would be the non-cyclic 

CnF2nO molecules with the same carbon order as CF4, C4F10

if these become available. 

We should NOT be considering flammable gases or high 

pressure (large PV stored energy) gas radiators for 

underground areas (this is an even bigger “fantasy”). 

However in their absence we can blend NOVEC 5100 

or even legacy high-order fluorocarbons at low conc. 

to reduce gas radiator GWP:

19

19
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Refractive index & GWP ’load’ in a Cherenkov Gas Radiator

3 large RICH detectors currently in operation at CERN: 
using saturated fluorocarbon gas volumes ˜ 50-100 m3: 
C4F10 (COMPASS, LHCb RICH 1): GWP20 = 4880,
CF4 (LHCb RICH 2): GWP20 = 6870

A Cherenkov radiator vessel of volume V(m3) filled with 
a blend of gases of densities ri (kgm-3), 
fractional concentrations wi and individual GWPi (tonnes CO2 eq.) 
has a GWP environmental “load” (& release potential) L given by:

𝑳 =
𝑽

𝟏𝟎𝟎𝟎
σ𝒊 (𝒘𝒊 .r𝒊 . 𝑮𝑾𝑷𝒊 ) (tonnes CO2 eq.) [Eq. (1)]

The corresponding radiator gas mixture refractivity is given by :  

(n−1)𝒓𝒂𝒅 = σ𝒊 (𝒘𝒊. (n−1)𝒊 )                     [Eq. (2)]

V,r

How to find the molar concentrations wi of the constituents?
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Use speed of sound measured in real-time

(traditionally also called “c” by acousticians to confuse things) 

to get the molar concentrations of the gas components wi

Then use standard refractivity formula to get from calculated w1,2

to refractive index of the radiator gas in real-time along with  

standard relativistic expressions to get from n to Cherenkov g
thresholds for different particle species and b = 1 angle

Real-time measurement of speed of sound c takes us via the relative 

concentrations of the components to the speed of light b and beyond!!   

in the radiator gas

21

Remembering the aim…(focus  here on LHCb RICH2…)

(488.10-6)CF4 = (~1750.10-6)C5F10O*0.12+(300.10-6)N2*0.88

(n−1)𝒓𝒂𝒅 = σ𝒊 (𝒘𝒊. (n−1)𝒊 )
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Historical: The SLD experience: barrel CRID gas radiators (1990s)

87% C5F12/13%N2

gas radiator 

Sonar transducer

6 transducer pairs

@ 3 different heights

(hydrostatics)

22
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Polaroid Capacitative transducer components

Capacitative 350V activation/ bias ➔ rapid response  

37mm diameter determines 50 kHz dominant frequency: can 

operate over wide pressure range (50mbar ➔>35 bar…)

23
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Improvements in maintaining C5F12/N2 refractive index 

through sonar-based active mixture control

● Sonar

□ Inclusive Angles

● Sonar

□ Inclusive Angles

b
=

 1
 C

h
e
re

n
k
o

v
 A

n
g

le
 (

m
ra

d
)

30400       30600         30800       31000      31200  

33500          34000          34500         35000          35500

Run Number

With active mixture control:  dr/r ~ 0.2%

b = 1 Cherenkov angle comparison (1995-6 runs) 

between reconstructed ring data (□) in the SLD barrel 

CRID and angles from sonar-deduced refractive index 

corrected for atmospheric pressure (●) 

Using the flowmeter
analyzer in supply line
to modify the blend by
hardwired 4-20mA link 

to mass flow 
controllers

0,3 mrad rms

Before use of flowmeter
analyzer in supply line

Note: before and after
blend stabilization sonar

interpreted b=1 radius
agreed well with 

reconstructed radii!!
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So.. from c to b…
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LHCb RICH 2 with C5F10O/N2

GWP load = (0.12 molar*1*V.r)

LHCb RICH 2: CF4 thresholds

GWP load = (0.95 molar*4880*V.r)

Cherenkov threshold in C5F12/N2 mixtures 
and GWP load comparison with LHCb RICH2 (new vol.?) 

N2-NOVEC5110 (C5F10O) might be very similar (MW 266 vs 288)

Novec 5110 gives a huge

GWP load reduction of 

4636 V.r units
Even substituting 0.9 

molar CF4 with 0.12 molar

C5F12 reduces GWP load 

by 3784 V.r units
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Base fluid

Base fluid

density 

(1bar,25˚C)  

kgm-3

Base fluid

GWP

(20-yr)

Component (n-1)

(*106) 

(@ nm)

% Blend with N2 to 

match (n-1) CF4

GWP load 

(t.CO2)

% Blend with N2 to 

match

(n-1) C4F10

GWP load

(t.CO2)

CF4

LHCb RICH2

3.56 [18] 4880 [16] 488 (180-310 nm) [19] 100 1737 not applicable n/a

CF2O - - n/a n/a

C2F6 5.63 [18] 8210 [16] 793 (180-310 nm) [19] 38.1 1762 not applicable n/a

Lin-C2F4O - - n/a n/a

C3F8 7.75 [18] 6640 [16] 1180 (250 nm) [16] 21.4 1099 not applicable n/a

Lin-C3F6O - - n/a n/a

C4F10

LHCb RICH1

9.97 [18] 6870 [16] 1450 (250 nm) [16] 16.3 1119 100 6849

Lin-C4F8O

(Non-cyclic

C4F8O)*

9.5

(est.)

Probably 

< 1

(NOVEC 5110

Analogy)

1380 @ 400nm

(based on 3M PFG-3480 c-

C4F8O [7]: linear C4F8O not 

yet measured but  assumed 

similar) 

18.4 0.18 112.7*

(>100% would imply 

necessity of operating 

C4F8O at slight 

overpressure)

1.07

C5F12

11.63 [18] 

(BP 30 ˚C 

at 1 bar)

6350 [16] 1750 (180-310nm)[19]

(40 ˚C, undiluted)
13.0 957 79.3 5857

NOVEC 5110

C5F10O

10.7 [13] (BP 27 

˚C  at 1 bar)

<1  [13] Not yet measured: probably 

around 1650 by analogy with 

C4F10 and C4F8O ratio 

13.9 0.149 85.2 0.91

Table 1:  GWP loads of various SFCs and NOVEC 5110 blended with N2 ((n-1) = 310.10-6) to match refractivity of CF4 and C4F10

assumed radiator volume: 100 m3

Positions of presently unavailable-in-bulk CnF2nO fluids are shown in italics. Refractivities to match (CF4 and C4F10) shown in bold. 

GWP loads and refractivities calculated using eqs. (1)-(3): assumed radiator volume: 100 m3

*Made in research quantities by Synquest Inc. as isomers Heptafluorobutyryl fluoride PN: 2116-2-07 CAS: 335-42-2 

Octafluoro-2-butanone PN: 2117-2-10 CAS: 337-20-2 & Heptafluoroisobutyryl fluoride PN: 2116-2-0A CAS: 677-84-9 

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w
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Can make the same C5F10O comparison

as for a CF4 radiator (see preceeding table)

But low GWP non-cyclic C4F8O 

would be easier to circulate, if available.
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LHCb RICH 1: C4F10 thresholds

GWP load = (6870*V.r)

Cherenkov threshold in C5F12/N2 mixtures 
and GWP load comparison with LHCb RICH1 (new vol.?) 

N2-NOVEC5110 (C5F10O) might be very similar (MW 282 vs 288)

85% Novec 5110 gives a 

huge GWP load reduction

of 6870 V.r units
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Base fluid

Base fluid

density 

(1bar,25˚C)  

kgm-3

Base fluid

GWP

(20-yr)

Component (n-1)

(*106) 

(@ nm)

% Blend with N2 to 

match (n-1) CF4

GWP load 

(t.CO2)

% Blend with N2 to 

match

(n-1) C4F10

GWP load

(t.CO2)

CF4

LHCb RICH2

3.56 [18] 4880 [16] 488 (180-310 nm) [19] 100 1737 not applicable n/a

CF2O - - n/a n/a

C2F6 5.63 [18] 8210 [16] 793 (180-310 nm) [19] 38.1 1762 not applicable n/a

Lin-C2F4O - - n/a n/a

C3F8 7.75 [18] 6640 [16] 1180 (250 nm) [16] 21.4 1099 not applicable n/a

Lin-C3F6O - - n/a n/a

C4F10

LHCb RICH1

9.97 [18] 6870 [16] 1450 (250 nm) [16] 16.3 1119 100 6849

Lin-C4F8O

(Non-cyclic

C4F8O)*

9.5

(est.)

Probably 

< 1

(NOVEC 5110

Analogy)

1380 @ 400nm

(based on 3M PFG-3480 c-

C4F8O [7]: linear C4F8O not 

yet measured but  assumed 

similar) 

18.4 0.18 112.7*

(>100% would imply 

necessity of operating 

C4F8O at slight 

overpressure)

1.07

C5F12

11.63 [18] 

(BP 30 ˚C 

at 1 bar)

6350 [16] 1750 (180-310nm)[19]

(40 ˚C, undiluted)
13.0 957 79.3 5857

NOVEC 5110

C5F10O

10.7 [13] (BP 27 

˚C  at 1 bar)

<1  [13] Not yet measured: probably 

around 1650 by analogy with 

C4F10 and C4F8O ratio 

13.9 0.149 85.2 0.91

Table 1:  GWP loads of various SFCs and NOVEC 5110 blended with N2 ((n-1) = 310.10-6) to match refractivity of CF4 and C4F10

assumed radiator volume: 100 m3

Positions of presently unavailable-in-bulk CnF2nO fluids are shown in italics. Refractivities to match (CF4 and C4F10) shown in bold. 

GWP loads and refractivities calculated using eqs. (1)-(3): assumed radiator volume: 100 m3

*Made in research quantities by Synquest Inc. as isomers Heptafluorobutyryl fluoride PN: 2116-2-07 CAS: 335-42-2 

Octafluoro-2-butanone PN: 2117-2-10 CAS: 337-20-2 & Heptafluoroisobutyryl fluoride PN: 2116-2-0A CAS: 677-84-9 

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w
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Ultrasonic gas analysis in ATLAS:

the only fluorocarbon leak
detection of  its type at CERN

(a non-Cherenkov, 
environmental monitor,
with extended analysis

algorithm)…

32
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Ultrasonic gas analysis in a process
environment with multiple background 

gases

33

https://www.mdpi.com/2410-390X/5/1/6

33

Precision: 10-5 C3F8 into N2 at 1 bar
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Ultrasonic algorithm to find
component molar

concentrations
wi=1,2…

in gas blends

35
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(1) Calculate data base of individual CVi..n CPi..n

over expected T, P. range:

Example here: C3F8: (mol. wt.) = 188 in N2 (mol. wt. = 28) 

36
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(2) Calculate c‘theo’ as a function of concentration from component 

Cp, Cv’s over the expected sonar temperature, pressure range to 

make database of c‘theo’ vs. conc. fit equations 
(example here 0- 1% C3F8 (m.w.= 188 in N2 (m.w.= 28): only one pressure shown here for clarity)

37
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(3) CAN UTILITY: Store these c‘theo’ vs. molar conc.  polyfit coeffs covering 

expected temperature & pressure range in “cans” at P,T grid intersections 

T ➔

P
➔

Tmin Tmax

Pmax

Pmin

Tstep

Pstep

Tmeas

Pmeas

(4) Calculate component concentrations wi from measured sound velocity 

cmeas & stored fit coeffs. interpolated to correspond to the measured T, P

!! This grid can become 3-D or higher-D with known contaminant gas(es) ➔
38
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Refractive index & GWP ’load’ in a Cherenkov Gas Radiator

3 large RICH detectors currently in operation at CERN: 
using saturated fluorocarbon gas volumes ˜ 50-100 m3: 
C4F10 (COMPASS, LHCb RICH 1): GWP20 = 4880,
CF4 (LHCb RICH 2): GWP20 = 6870

A Cherenkov radiator vessel of volume V(m3) filled with 
a blend of gases of densities ri (kgm-3), 
fractional concentrations wi and individual GWPi (tonnes CO2 eq.) 
has a GWP environmental “load” (& release potential) L given by:

𝑳 =
𝑽

𝟏𝟎𝟎𝟎
σ𝒊 (𝒘𝒊 .r𝒊 . 𝑮𝑾𝑷𝒊 ) (tonnes CO2 eq.) [Eq. (1)]

The corresponding radiator gas mixture refractivity is given by :  

(n−1)𝒓𝒂𝒅 = σ𝒊 (𝒘𝒊. (n−1)𝒊 )                     [Eq. (2)]

For just two gases we can blend small concentration wx of (heavier) SFC or NOVEC® 
vapour of high refractivity (n-1)x with wy of light transparent gas, refractivity (n-1)y

to replicate refractivity (n-1)z of a lighter SFC at high conc. – for a lower GWP load.

wx = 
(𝒏−𝟏)𝒛− 𝒏−𝟏 𝒚

𝒏−𝟏 𝒙−(𝒏−𝟏) 𝒚
[Eq. (3)]

V,r
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Aah…but what if there are 3 
(or more) gases present?

Acoustic Ambiguity ?
(2 or morecombinations ➔ same c…
so find w3… from different source…) 

Examples: 
CO2 from Non Dispersive IR,
O2 from Electrochemical cell,
H2O from hygrometry… etc.

40
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Example: Look-up tables of  SoS. vs. composition for 
C3F8/N2 (+ CO2) (ATLAS silicon tracker cooling leak analysis)

41

CAN UTILITY DB expanded

from 2-D to 3-D:

C3F8/N2 fit coeffs

stored @{T, P, CO2} grid

Extra interpolation step, 

starting from grid cub(oid) of 

uncertainty

to Tmeas, Pmeas,CO2 meas

Calculate sound vel vs. conc. eqns from

C3F8 & N2 AND KNOWN CONTAMINANT GAS 

Cp & Cv over expected T,P, %CO2 range.

Demonstration: 

1st acoustic measurement of 

concentrations of binary gas pair 

of interest (C3F8/N2)

in known varying conc. of 3rd gas 

(CO2) : 

(4 envelopes cycling every 4 hours)

Algorithm: industrial &  anaesthesia 

applications

https://www.mdpi.com/2410-390X/5/1/6 
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LHCb RICH 2 radiator has four gases at significant (%-scale)  concentration

here illustration of change in refractivity with varying CO2 concentration
(From RICH2013)

N2

content

CO2 molar conc. measurement: NDIR:

O2 molar conc. measurement: electrochemical fuel cell

N2/CF4 molar conc. measurements best derived acoustically

(on top of known O2, CO2 conc.) 
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Example with a second known contaminant gas: here H2O but could 
be another measurable gas like O2: 4-D {T,P, CO2, H2O} Process 
dataspace example ‘Cans’ of c vs. conc1,2 fit coefficients now at 
corners of tesseract. 
(Here in Coxeter B4 projection)

“Can Utility”:
Fit parameters to sound vel vs.
conc C5F10O/N2 @ T, P, wO2, wH2O

stored in nearest cans forming 
corners of 2 cubes in a 
Tessaract (T has 8 cube faces)

• 2 x {T,P,CO2} exc. H2O
• 2 x {T,P, H2O} exc. CO2

• 2 x {T, CO2, H2O} exc. P
• 2 x {P, CO2, H2O} exc. T

Opposite cubic faces explored in the following slide
43
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Tessar-Action
Extractio-reduction

https://www.mdpi.com/2410-390X/5/1/6 
44
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CAN FILLING: Of course, CP & CV for all gases (primary & background)
must be calculated for all T, P points on the n-D grid;

CAN UTILITY: Calculate & fit c in gas pair of primary interest from CP & CV

over their conc. range AND @T, P, known background gas conc. Grid points.

Database size (3-D example)

DB size = No. primary fit coeffs *
𝑹𝒐𝑰_𝑻

𝒅_𝑻
*
𝑹𝒐𝑰_𝑷

𝒅_𝑷
*
𝑹𝒐𝑰_𝑪𝒐𝒏𝒄.𝒃𝒌𝒅 𝒈𝒂𝒔 𝟏

𝒅_𝑪𝒐𝒏𝒄.𝒃𝒌𝒅 𝒈𝒂𝒔 𝟏
…

RoI_n = range of interest_n: d_n = stepsize_n ➔ Database explosion ?!? 
• Increasing stepsize (➔ longer interpolation distance) can reduce 

No. of cans (“cubes” become “cuboids”)…

• Some dimensions can be suppressed altogether using physical law 
(rather than empirical changes): 

• example for temperature dimension: 𝑐𝑡𝑎𝑏𝑠1 = 𝑐𝑡𝑎𝑏𝑠0
𝑡𝑎𝑏𝑠1

𝑡𝑎𝑏𝑠0

Database growth control 
(important in instruments using embedded m-controllers) 
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DRD4 WG 2 meeting: radiator gases May 17 2024



46

LHCb RICH 2 radiator has four gases at significant (%-scale)  concentration

here illustration of change in refractivity with varying CO2 concentration
(From RICH2013)

N2

content

CO2 molar conc. measurement: NDIR:

O2 molar conc. measurement: electrochemical fuel cell

N2 CF4 molar conc. measurements best derived acoustically

(on top of known O2, CO2 conc.) 

N2(n-1) (y)=300.10-6, CO2(n-1)(j1)=450. 10-6, O2(n-1)(j2)=250.10-6

(CF4 (n-1) (target) = 488.10-6)

Possible NOVEC5110 C5F10O/N2 (or C5F10O/CO2) 

C5F10O (n-1) (x) ~ 1750.10-6

substitution would have a big GWP advantage…
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Extension to a Cherenkov Gas Radiator with extra known

(= measured) concentrations of background gases

(eg LHCb RICH 2:  CF4, N2, O2, CO2)

CF4 GWP20 = 6870 Target refractivity = (n –1)z = 488. 10-6

From previous slide, the radiator gas mixture overall refractivity is given by :  

(n−1)𝒓𝒂𝒅 = σ𝒊=𝟏
𝒊𝒎𝒂𝒙(𝒘𝒊. (n−1)𝒊 ) where i is the set of ALL gases present

When j contaminant gases of known molar concentrations  wj are present we
can still blend a small concentration wx of (heavier) SFC or NOVEC® vapour of high 
refractivity (n-1)x with wy of light transparent gas to substitute the refractivity (n-1)z

of a lighter SFC at high concentration – to achieve a lower overall GWP load.

(𝒏 − 𝟏)𝒛(𝒕𝒂𝒓𝒈𝒆𝒕)= 𝒘𝒙[ 𝒏 − 𝟏 𝒙 −(𝒏 − 𝟏)𝒚] + (𝒏 − 𝟏)𝒚 + σ𝒋=𝟏
𝒋𝒎𝒂𝒙

𝒘𝒋[(𝒏 − 𝟏)𝒋−(𝒏 − 𝟏)𝒚]

[Eq. (2) ➔Eq. (2b)]

wx = 
(𝒏−𝟏)𝒛− (𝒏−𝟏)𝒚+σ𝒋=𝟏

𝒋𝒎𝒂𝒙
𝒘𝒋[(𝒏−𝟏)𝒚 − (𝒏−𝟏)𝒋]

𝒏−𝟏 𝒙 − (𝒏−𝟏)𝒚
[Eq. (3) ➔ Eq. (3b)]
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On the turning away…

The uncertain ECHA path to prohibition
(a path paved with impracticalities?)

Need to clarify 3M and other manufacturers’ 
attitudes to future fluoroketone (CnF2nO) production 

Electronics industry is the driver!

[51] ECHA/NR/23/04;

https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal] 

[52] ECHA Candidate List of substances of very high concern for Authorisation; 

https://echa.europa.eu/candidate-list-table

[53] Annex to the Annex XV restriction report proposal for restriction:  Per- & polyfluoroalkyl

substances (PFASs); ECHA; 22/03/2023

https://echa.europa.eu/documents/10162/d2f7fce1-b089-c4fd-1101-2601f53a07d1

[54] Per- and polyfluoroalkyl substances (PFAS); ECHA

https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas
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Conclusion
Saturated (CnF(2n+2)) fluorocarbons under attack for their high GWP

➔ Reduce wastage, purification loss in present installations; 

➔ Mix smaller molar concentrations of heavy SFCs

or better CnF2nO with light N2 etc. carriers for desired ref. index; 

SLAC SLD CRID sonar (1990s): demonstrated Cherenkov angle/b

measurement & dynamic C5F12/N2 blend control: ultrasonic feedback to 

flow controllers

Refractive index can be continuously monitored by utrasound even in 

dynamically-varying multi-mixes, if  3rd,4th.. component concs. known

from other sensors ;  

New (non-cyclic) CnF2nO molecules very promising (particuarly

C5F10O (3M NOVEC ® 5110)): blend studies starting (Antonello Di Mauro)

(need optical, dessication, thermodynamic (circulation)  studies) ➔

potentially huge GWP savings

➔ CF2O & lin. C4F8O would be ideal…   

We are a small-scale users who will always ride on the 

coat-tails for the semiconductor manufacturing industry. 

We should nonetheless enter discussions with manufacturers!
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References and back-up 
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Some Conclusions at this stage : drawing on 
https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

57

• Is the banning of all fluorocarbons…a realistic aim? … probably not…

• 3M seem to have lost enthusiasm to produce fluorinated fluids after

2025, but companies like F2 Chemicals (Preston, UK), Astor (Ru),

Synquest (FL), Techspray (GA) continue (probably many others:

e.g.China): groups at CERN looking into alternative suppliers (stated

Jan 26 2024)

• We are a small-scale users who will always ride on the back of the

semiconductor industry.

• We should nonetheless enter discussions with other manufacturers! 

CERN is already doing this! 

But  discussion should concentrate on CnF2nO molecules over the full 

carbon spectrum with GWP = 0. 

DRD4 WG 2 meeting: radiator gases May 17 2024



NOVEC 649: C6F12O: GWP <1

NOVEC 7100: C5F9H3O: GWP = 297

NOVEC 7100: C4F9OCH3: 

NOVEC 649 cools MAPMTs in LHCb!

G. Hallewell: RICH 2022, Edinburgh : Sept 12-16, 2022
58
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https://indico.cern.ch/event/1155238/attach

ments/2436920/4173752/EP-

DT%20Seminar%20May%202022.pdf

https://indico.cern.ch/event/1155238/attachments/2436920/

4173752/EP-DT%20Seminar%20May%202022.pdf
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https://indico.cern.ch/event/1022051/contri

butions/4319538/attachments/2231436/37

81060/LHCb-RICH-Future-Radiators.pdf
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https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-

Values%20%28Feb%2016%202016%29_1.pdf
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Pressure-enthalpy plots for various

Saturated fluorocarbons and blends

(Circulation thermodynamics)
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Low temperature (-80°C) 

N2 gas-induced condensation (B): 

of C5F12 fromC5F12/N2 radiator gas 

(flow~1m3/hr, negligible C5F12 loss)

followed by (C) electric re-evaporation

(1-1.5m below condenser liq. level)

Cold N2 gas (‘conditioned’ by

counter-flow with boil-off LN2

from liquid argon calorimeter: (A))

Ultrasonic (speed of sound) – aided

“on-the fly” mixing of typical 

17%N2 /83%C5F12 (molar) radiator 

gas mixture (D)

SLD Barrel CRID C5F12/N2 gas radiator: continuous thermodynamic recirculation

A

B

C

D
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(A) C5F12 Condenser 

(cooled with GN2)

LN2 conditioner
(Chills GN2 in counterflow with LN2

from liquid argon calorimeter source)

(B) C5F12 storage tank

and N2 separator

(C) C5F12 Evaporator

SLD Barrel CRID C5F12/N2 gas thermodynamic recirculator

G. Hallewell CPPM Habilitation à Diriger des Recherches – February 15, 2011



Electric evaporation of C5F12

(dh ~ 1.3m)

Condensation in tank (B) @ varying temperature ➔

down to “keep-cold” temp of -80°C (PC5F12 ~ mbar),

drastically reduces C5F12 loss by evaporation

(D) N2 addition (C5F12 p.p. reduction) 

& flow through CRID Radiator vessel

Collapsing C5F12 partial pressure

& some condensation in precooler (A)

Pure C5F12@ -80C from

bottom of tank

(C) Electric heating 

of liquid C5F12

SLD CRID C5F12 Thermodynamic circulation: Pressure-Enthalpy

1barabs condenser 

Headspace (& CRID 

radiator vessel)

pressure maintained 

by N2 in return 

radiator gas & 

condenser N2

vent to atmosphere 

SLD CRID C5F12 circulation

rgh of 

1.5m C5F12 

!
Vapour

Liquid

Changing

Phase
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Pressure-enthalpy plots for various

Saturated fluorocarbons and blends

(Circulation thermodynamics)
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RICH 1: C4F10 radiator: 

lower momentum PID

RICH 2: CF4 (+CO2) radiator: 

higher momentum PID

COMBINED RICH PEFORMANCE & PARTICLE SPECIES IDENTIFCATION RANGE
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C4F10
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CF4
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CO2

G. Hallewell: GasRad GWP: ECFA TF-4 Meeting May16-17th 2023



71

C5F12

G. Hallewell: GasRad GWP: ECFA TF-4 Meeting May16-17th 2023



G. Hallewell: GasRad GWP: ECFA TF-4 Meeting May16-17th 2023

C6F14
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12%C5F12

/88%CO2
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88%C5F12 /12%CO2
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Historical: fluorocarbons: military (mainly radar) 
and industrial uses (1)

Radar magnetron

Direct immersion
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Saturated Liquid FC immersion for destroying 

(accelerated burn-in) and preserving (cooling) electronics

Historical: fluorocarbons - military and 
industrial (heat transfer) uses (2)
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Historical - fluorocarbons: military and 
industrial (heat transfer) uses (3)

Vapour phase (non-contact) soldering of components on PCBs

(particularly surface mount) in high T fluorocarbon atmosphere !!!

The demand for vapour phase soldering is hardly going to “evaporate”.

New, lower GWP, transfer vapours will be needed  (e.g. NOVEC)

G. Hallewell ECFA TF-4 Meeting May16-17th 2023



Another linear all single-bonded geometry

C4F10O..?  TO BEWARE???

Bis(pentafluoroethyl)ether / 

Perfluoroethyl ether

GWP =  ??  

Unfriendly (not nice to mice) & lachrygene

https://pubchem.ncbi.nlm.nih.gov/compound/Bis_pentafluoroethyl_-ether

https://www.govinfo.gov/content/pkg/CFR-2017-title40-

vol23/xml/CFR-2017-title40-vol23-part98-subpartA-appA.xml
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SynQuest Labs Inc., 
13201 Rachael Boulevard Rt 2054, Alachua, FL 32615, USA
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SynQuest Labs Inc., 

13201 Rachael Blvd Rt 2054, Alachua, FL 32615, USA

can manufacture different C4F8O configurations, including linear

The cyclic molecule seems to be cheaper for SynQuest to manufacture: 

whereas 3M make NOVEC 649, 5110 which are non-cyclic
80
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