
WbWb production at the tt threshold

Ankita Mehta, Matteo Defranchis (CERN)

With the help of Marcel Vos and Michele Selvaggi

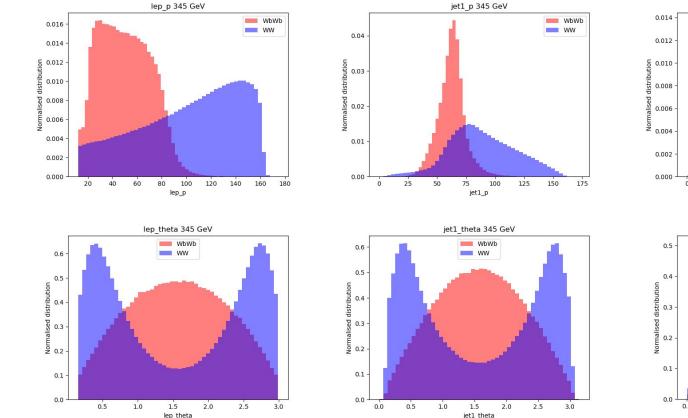
Goal: define a strategy for tt threshold scan at FCC-ee

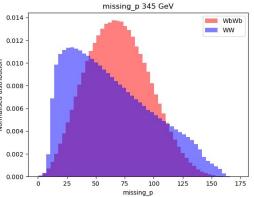
- Realistic WbWb selection in the presence of backgrounds
 - Currently focussing on I+jets and fully-hadronic channels (~80% of total branching ratio)
 - Focussing on WW background
 - We will consider including hadronic tau decays and di-leptonic channels in the future
- Optimise threshold scan to maximize sensitivity to relevant SM parameters
 - Focus on top mass, total width, Yukawa coupling + strong coupling constant
 - Assume that impact of uncertainty in EW couplings and mW is negligible (to be checked later on)

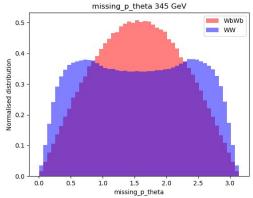
Simulated samples and event selection

We use centrally-produced FCC-ee samples for WbWb and WW production at 345 GeV (thanks to Louis Portales for producing them quickly!)

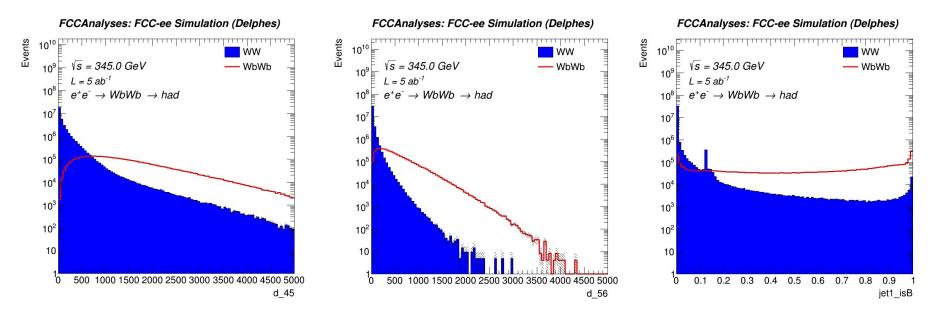
Semi-leptonic:

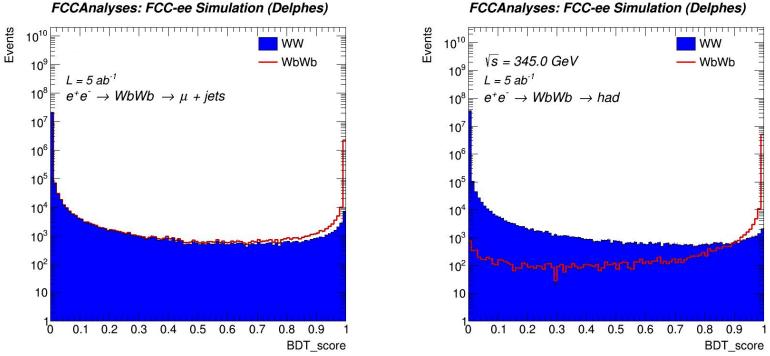

- Exactly 1 isolated lepton (electron, muon) with p > 12 GeV
- Exclusive jet clustering with n-jet = 4


Fully hadronic:

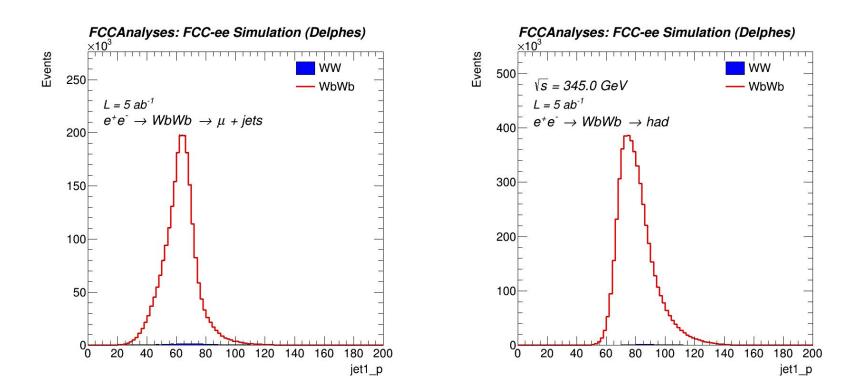

- Zero isolated leptons with p > 12 GeV (no other selection)
- Exclusive jet clustering with n-jet = 6

Heavy flavour tagging information used for event classification


Kinematics: e.g. with semi-leptonic




```
Jets: e.g. with hadronic
```



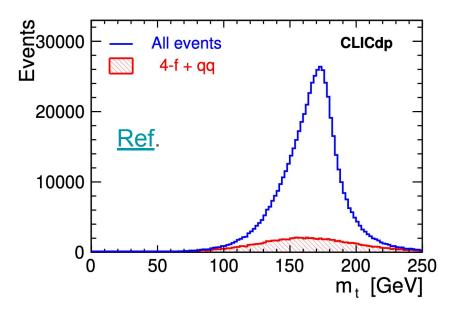
Note: for next iteration we will remove HF score from BDT and use a b-jet multiplicity categorisation instead

"Brute force" BDT with all variables

Distributions after BDT cut > 0.5

Summary and outlook of reco-level studies

- Extremely pure WbWb sample can be obtained in I+jets and all-jet channels
 - Only considered WW for now
 - Expect some DY contribution, especially in the all-had channel (will add for next time).
 However we doubt that this would change the picture significantly
- For practical purposes (parameter extraction), we can assume we can have a pure WbWb selection in all decay channel
 - Assume 100% efficiency and acceptance, 100% pure WbWb selection
 - We are now checking how much the lepton selection impacts the overall efficiency
 - We will check if the picture changes at higher/lower energies (above/below threshold)
- No need for kinematic reconstruction to measure cross section


Comparison with previous studies

Somewhat larger background contamination (similar BDT method)

Considered background is (presumably) WW->4f + ISR/FSR -> qq

To which extent our WW sample includes to ISR->qq contribution?

One difference: they require 2 b-tagged jets, and they don't use the HF-score in the BDT. This may make some difference

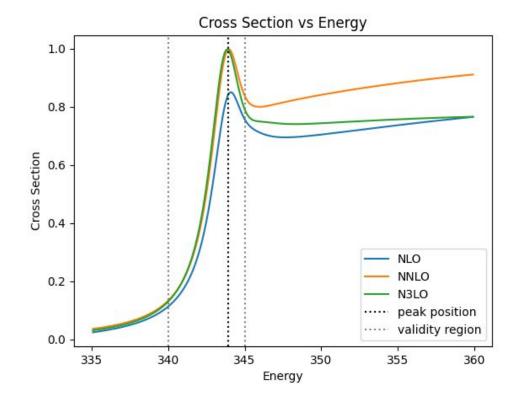
Setting up fit of SM parameters using threshold scan

Using QQbar_Threshold fixed-order calculation (WbWb)

- Full N3LO corrections to tt potential at the threshold (toponium bound state), including EW, Higgs, and non-resonant contributions
- Yt modifier implemented as effective dim-6 operator

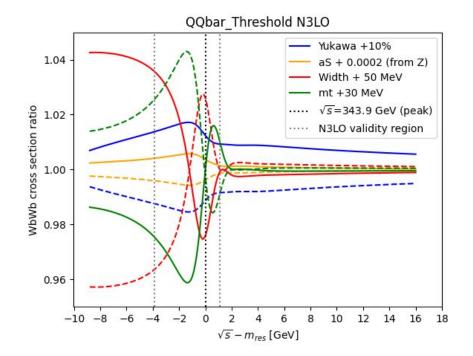
Yukawa_factor = $1 + \frac{c_{\mathrm{NP}}}{\Lambda^2} \frac{v^3}{\sqrt{2}m_t}.$

JCPC


- Top mass implemented in potential subtracted (PS scheme)
- mt(PS) ~ mt(pole) 1 GeV (assume 171.5 GeV)

N.B. calculation only valid in the vicinity of the threshold

Perturbative convergence of calculation


- As expected, perturbative convergence is spoiled above production threshold (missing matching with continuum)
- Based on this, we define a validity region for the calculation between 340 and 345 GeV
 - Will focus on this region in the following

Note: matched calculations are available, but only at NLO QCD [Ref]

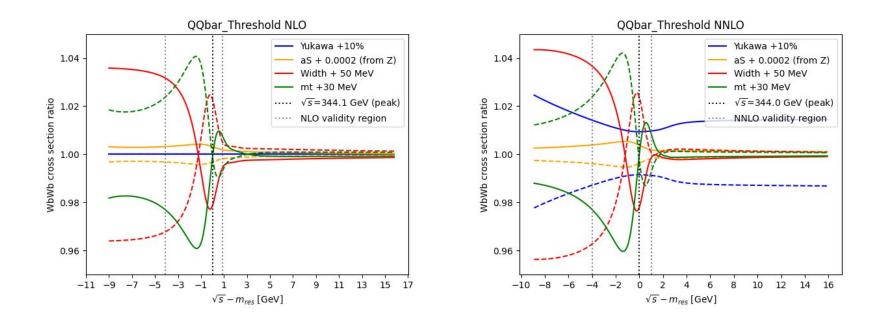
Sensitivity to SM parameters

- Highest sensitivity to mt at around
 -1.4 GeV from peak
- Total width well constrained below threshold and at the peak
- Some residual sensitivity to Yukawa at peak +1 GeV
- Sensitivity to aS small compared to Z peak (corresponding to variation)
- IF sensitivity to aS vanishes above threshold, a measurement at (say) 365 GeV would be very beneficial
 - In contact with Davide Pagani on this point

Note: for mt, width, and yt, very similar picture at lower orders (see backup)

Summary of phenomenological study

- A **simultaneous fit of mt, total width, and yt** seems possible based on a threshold scan of [-4,+1] GeV around the threshold
- 30 (50) MeV shift in mass (width) induce a 4% shift in the xsec
- 10% shift in Yukawa produce a ~1% effect just above threshold
- Limited impact from aS assuming expected precision at Z pole
- Some residual sensitivity to yt above threshold -> we will investigate the possibility of **one additional scan point well above threshold** (continuum)
- Presented studies do not include impact from <u>ISR</u> and beam energy resolution, which can be significant -> will be included at next update


Outlook: putting the pieces together

- We can make realistic scenarios for the tt threshold scan and extract the relevant parameters (including 2 vs 4 IP)
- It will be interesting to see if we can somewhat match HL-LHC for the top Yukawa with 0.58/ab/y * 4y * 4 IP (*.85 eff) ~ 8/ab at 365 GeV

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	tī	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340 - 350	365
Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
	610^{12} Z		$2.410^8\mathrm{WW}$		$1.4510^{6}\mathrm{HZ}$	$1.910^{6}t\bar{t}$	
Number of events					+	$+330 \mathrm{k} \mathrm{HZ}$	
					45k WW \rightarrow H	$+80 \mathrm{k} \mathrm{WW} \rightarrow \mathrm{H}$	

BACKUP

Parameter variations at NLO and NNLO

